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INTRODUCTION 

General Information  

The ArNI-X system is used to simulate spiking neural networks (SNN) on CPU and GPU. For sake of 

maximum performance, it is written in the C++ and CUDA programming languages. At present, there 

exist versions for Windows and Linux. There are 3 modes to use ArNI-X corresponding to different 

trade-offs between flexibility and ease of use: 

• XML mode. In this regime, no programming is needed. The network structure is defined in a 

special XML-based declarative language using the built-in models of neurons and synaptic 

plasticity and combining various standard neuron connectivity patterns. The present manual 

describes only this mode of ArNI-X usage. 

• API mode. In case of custom neuronal structures, non-standard input spike sources and network 

activity post-processors, it is possible to implement all these features using the C++ API 

provided. The neuron and synaptic plasticity models are standard. 

• Source modification mode. If the emulated neuron model does not fit the model class 

implemented in ArNI-X, the source modification will be required. The ArNI-X code is written so 

that to make the process of new model implementation as easy as possible but discussion of the 

respective techniques is beyond the scope of this manual. 

The implemented neuron models are rather simple and are hardly suitable for detailed 

neurophysiological modelling. ArNI-X is more oriented to practical applications, creation of prototypes 

of SNN-based devices solving real-world problems. A separate important goal is prototyping possible 

implementation of SNNs on modern (e.g. Inlel’s Loihi) and future neuroprocessors. Keeping it in mind, 

we tried to make the models of neurons and synaptic plasticity as simple and hardware-friendly as 

possible.   

In order to illustrate how to emulate SNN using ArNI-X, we include three simple examples in the 

Tutorials. It is strongly recommended to read the Tutorials first. The reader of this manual is 

assumed to have basic knowledge of the SNN theory. More non-standard or advanced concepts are 

explained as they appear in the text. 

Installation  

No special installation procedure is required – just the corresponding archive file unpacking with 

conserved directory structure. 

This system uses boost libraries. If boost is not installed then the libraries in the boost folder (in the 

distribution package for Linux) should be copied to some place from which the OS loads shared 

libraries.  

Running SNN Simulation using ArNI-X 

ArNI-X executable modules are realized as console applications. They are launched in a directory that 

will be referred to as working directory. All simulation results are saved in this directory. It is assumed 

that computational experiments with SNNs go in series such that every individual simulation run has the 
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series name and the numeric id in the series. In order to run a simulation, the user should specify the 

SNN structure using a special file <experiment_numeric_id>.nnc. All nnc files related to one 

experiment series should be in separate directory. The dynamic libraries fromFile and 

StateClassifier from the distribution package should be copied into this directory. The nnc files 

contain SNN structure definition in the XML language; the format of these definitions is described in the 

subsequent sections of this manual. The simulation is performed by the executable files ArNICPU (for 

CPU) or ArNIGPU (for GPU). The experiment series name and the experiment id are specified as 

command line arguments (see below). 

The simulation duration can be specified in the command line, as well. 

The GPU version works with NVIDIA GPUs with compute capability at least 5.2. 

TUTORIALS 

Single Neuron  

The network configuration (.nnc) files used in the Tutorials are in the sub-directory Tutorials of the 

ArNI-X root directory. Tutorial #1 illustrates a network consisting of a single neuron. It is described in 

the file 1.nnc. You can change the neuron parameters and see how its activity changes. The Tutorials 

works on any computer even without GPU and therefore are based on the CPU version of the simulator 

ArNICPU. We recommend launching the simulator from the Workplace sub-directory. It can be done 

by the command line 

ArNICPU ..\Tutorials -e1 -Pt 

In the Linux systems, this line should be prefixed by ./ and the slash should be used instead of the back 

slash. This command line means that the configuration file ..\Tutorials\1.nnc will be used and 

the text file containing network activity record will be created (-Pt). 

Text network activity protocol is the simplest form of recording network activity. Every its row 

corresponds to one simulation step, every column corresponds to a neuron. If the given neuron fired on 

the given step, it will be denoted by the character ‘@’ in the respective position. Otherwise, the character 

would be ‘.’. 

The nnc files are written in XML language. The top level node is always SNN. 

The input spike sources are defined in nodes RECEPTORS. Every receptor section should have a name 

(here, it is R) and input node count (10 – in our case). Input spike sources are implemented as dynamic 

libraries. Details of the implementation are described in the node Implementation. The present 

manual covers only two input spike source types – fromFile and StateClassifier (see Tutorial 

#3). The fromFile source reads input spikes from file and adds Poissonian noise to them. If the input 

type is “none” (the attribute of the args node), only Poissonian noise is sent to the network. The 

noise node inside args node defines the noise intensity. Namely, this number f is probability of input 

spike from one node in one emulation step. Henceforth, we will take each emulation step equal to 1 
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msec. Thus, the mean noise frequency for each input network node is 300 Hz. The history_length 

node specifies the emulation duration. It is equal to 1000 (=1 sec). 

The network itself is described inside the NETWORK node, particularly, in the Sections node. There 

may be other nodes inside NETWORK except Sections, but they are used to describe network parts 

implemented by separate dynamic libraries – this feature is not covered by the present manual. The 

Sections node includes two types of nodes – Section and Link. The former describes neuron 

populations (or network sections), the latter – connections between populations (also called projections). 

Our example contains only one section consisting of one neuron. Its name is neuron. The section 

properties are defined in the props node. In our case, this single neuron is the simplest leaky integrate-

and-fire (LIF) neuron. This neuron has only one property – membrane potential decay time constant. 

Here, it equals to 10 msec (see the node chartime). Each Section node should contain the n node, 

which specifies the number of neurons belonging to this section.   

Every Link section defines one projection type. Projection always connects neurons from two neuron 

sections or an input node section with a neuron section (projections from a neuron section to itself are 

also allowed). In our example, the only projection is from input nodes to our single neuron. The 

connection policy is all-to-all. Connections (projections) also have some properties. The most important 

one is the synaptic weight. In our neuron model, it is a value by which the membrane potential changes 

when the synapse receives a spike. 

When the membrane potential reaches the threshold value H, the neuron fires and the membrane 

potential is decremented by H. In the LIF neuron model implemented in ArNI-X H = 8.531. Such a 

strange value is explained by historical reasons. On the early stages of our research project, we 

experimented with analog neurons implemented in hardware with fixed threshold potential equal to 

0.8531 Volts. This constant then migrated to numerous and diverse software models so that even after 

end of our hardware experiments we decided not to change this value to, say, 1 because it would require 

too many changes in many places. If the threshold equal to 1 or to 0.02 Volts (the difference between the 

threshold and rest potentials in living neurons) seems more preferable, it is easy to get just by 

multiplying all synaptic weights by the respective constant. 

After the simulation using the command line above, you see the new file spikes.1.txt. This file 

contains only one column showing activity of the neuron. Counting number of the ‘@’ characters we 

obtain the mean neuron’s firing frequency equal to 299 Hz. Varying the input synaptic weight, you can 

see how the neuron activity changes. 

It should be noted that in the present version of ArNI-X for Linux, a small bug exists, which sometimes 

requires execution of the command reset in the terminal after running the emulator.  

Liquid State Machine  

In the previous tutorial, we worked with a single neuron. The present tutorial is devoted to exploration of 

behavior of many interconnected neurons. A large ensemble of chaotically interconnected neurons can 

be used for classification of spatio-temporal patterns. The idea of this classifier (it is called Liquid State 

Machine) is the following. Changing in time streams of input spikes which reflect dynamics of a certain 
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process are sent to input nodes of the chaotic SNN. This stimulation induces network activity. Since the 

SNN is recurrent, it has memory in the sense that its current activity depends on current stimulation as 

well as on stimulation in more or less distant past. Signals travelling in the SNN keep information about 

recent input spikes. Current network activity measured in terms of the mean firing frequencies of its 

neurons is different for different dynamics of input spike streams in the recent past, and therefore, it can 

be used by an external classifier for recognition of spatio-temporal patterns. Of course, this mechanism 

works only in the networks with certain characteristics of their neurons and connectivity. It makes 

exploration of properties of such chaotic networks important.  

In this tutorial, the chaotic SNN described in the file 2.nnc includes two neuron populations – 

excitatory and inhibitory. The synaptic weights of connections from the former neurons are positive, 

from the later – negative. The names of these populations are E and I, correspondingly. Excitatory 

neurons are stimulated by Poisson noise – as in the previous tutorial. But these connections are not “all-

to-all”. The projection property probability determines probability that the given input nodes is 

connected to the given neuron. There are 700 excitatory neurons and 300 inhibitory neurons in the 

network.  

However, this time, excitatory neuron model is more complex than simple LIF. Threshold potential of 

these neurons is not constant. Every time the neuron fires it is incremented by 1 (see the 

threshold_inc parameter); after that it linearly drops to its rest value 8.531. The speed of this 

decrease is controlled by the parameter threshold_decay_period. Namely, every emulation step, 

threshold potential decrease by the value of threshold_inc divided by the value of 

threshold_decay_period. This model is called LIFAT (leaky intergrate-and-fire neuron with 

adaptive threshold). This feature provides the network with the homeostatic property – it is hard for too 

active neurons to increase their activity more because of the high value of their threshold potential. 

The file 2.nnc describes connections between these two kinds of neurons in four Link XML nodes. 

We see that all postsynaptic connections of excitatory and inhibitory neurons have identical properties. It 

should be noted that excitatory connection have another important property, in addition to synaptic 

weight. It is synaptic delay – number of emulation step necessary for transition of a spike from the 

presynaptic neuron to the postsynaptic neuron. By default, it is 1 but for excitatory connections in this 

example it is a random value from the range [1, 30]. We see also that inhibitory connections have the 

great negative weight. 

Run the simulation by the command line 

ArNICPU ..\Tutorials –e2 -Pt 

Now let us look at the firing frequency dynamics for the E and I populations. It is drawn by the python 

script DrawSectionActivities.py if to run it in the Tutorials directory (it may require 

installation of some additional python packages). Here it is: 
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We see that the E population demonstrates non-trivial rhythmic behavior with the frequency about 20 

Hz. 

Supervised Learning – Written Digit Classification  

In the previous tutorials, we considered behavior of networks which did not change during emulation. 

However, the most valuable property of neural networks is their ability to learn via the appropriate 

modification of their synaptic weights. This ability is demonstrated in the present tutorial for a case of 

supervised learning. In this learning regime, several different classes of objects are presented to the 

network in the form of spike streams from its input nodes. After presentation of each object, a special 

separate input node emits spike indicating the class which the presented object belongs to. During the 

learning process, network’s synaptic weights should be adjusted to form specific reaction of network to 

objects from different classes – there should be neurons in the network which respond by firing to 

presentation of objects from one specific class.  

In this tutorial, we use the well-known image set called MNIST. It contains 60000 small monochrome 

images of hand written digits (0 – 9) used for learning and 10000 digit images used for testing. Each 

image has size 28×28 pixels, therefore, the network has 784 input nodes – one input node corresponds to 

one pixel. Each image presentation lasts 10 msec. The probability that the given input node emits spike 

in one emulation step is proportional to the pixel brightness and is equal to 1 for the brightest pixels. 

Besides that, the network has 10 additional input nodes serving for labelling the image presented. Each 

label node emits spike just after presentation of an image from the corresponding class. Here are 

examples of these images: 
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The images in the uncompressed form are stored in the binary file MNIST.bin. Image pixels are stored 

row by row, 1 byte per pixel. Image labels are stored in the text file MNIST.target – one line per 

image. 

This supervised classification learning problem will be solved by the network specially designed for 

classification tasks. Its architecture is called CoLaNET (Columnar-Layered NETwork). The network 

structure defined in the file 3.nnc is briefly described below. 

The network consists of several identical structures called columns. One column corresponds to one 

target class. Thus, if we apply this network to MNIST there will be 10 columns in the network. Every 

column contains 3 kinds of neurons organized in 3 layers. 



TUTORIALS 

Page 7 

 

 

The structure of one column is shown below. 
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We see that it includes several neurons labelled by the letter L – which means “learning neurons”. While 

one column corresponds to one target class, one L neuron corresponds to significantly distinctive 

instances (sub-classes) of one class. All neurons are described by the simplest LIF (leaky integrate-and-

fire) model with slight modifications described later. 

We begin the description with the working regime assuming that all L neurons have correct values of 

synaptic weights (which are the result of the learning process considered later). In this regime, the 

network behavior is simple. The object description has the form of spike trains emitted by input nodes 

(the blue rectangle at the bottom). If the L neurons have right values of their synaptic weights, then only 

an L neuron belonging to the correct column will fire in response to this stimulation. It will cause firing 

of the OUT neuron which signals presentation of an object of the corresponding class. 

Now discuss the learning process. In this process, the network obtains the information about the current 

object as well as the information about class (label) of this object. As it was said, the latter has the form 

of a single spike emitted by the respective input node encoding the current class label just after the 

object presentation. 

Here, we encounter the first significant distinction from the classification process in the traditional 

neural networks. The traditional formal neurons have no internal dynamics – their output depends only 

on the current values of their inputs and does not depend on the previous input values. In contrast, 

spiking neurons are dynamical systems – their state depends on their history. Therefore, in the case when 

the consecutive examples presented to the network are independent (as they are in typical machine 

learning tasks), the presentations of two consecutive examples should be separated by a certain period of 

“silence” – absence of any spikes. It is necessary to exclude influence of the previous object on 

classification of the current object. In our case, every example is presented during 10 msec, and the 

silence period which is 5 msec. Moreover, in order to completely erase information about past image, 

     

   

   

     
             w  

w  

pl s c connec ons

connec on t pes

strong excit tor 

excit tor 

 el  e strong
inhibitor 

bloc ing

 el  e 
 op mine

        

  

  



TUTORIALS 

Page 9 

the active input node send powerful inhibitory signal to all L neurons. This signal propagates 4 msec so 

that it reaches L neurons just before the next image presentation. The L neurons have the strict lower 

boundary of their membrane potential equal to 0 that guarantees their reset after obtaining a strong 

inhibitory spike. 

At the beginning of the learning process, all weights of all plastic synapses (only neurons from the 

lowest layer have plastic synapses) are zero. Therefore, the stimulation from the input cannot make them 

fire. However, the L neurons have two other sources of stimulation – their internal stochastic stimulation 

(implemented as small random number added to membrane potential every simulation step) and one of 

the class label nodes. The latter sends a spike to the BIASGATE neuron of its column (the 2nd layer). 

This spike forces the BIASGATE neuron to fire and send, in its turn, spikes to strong excitatory 

synapses of all L neurons in its column. If the L neurons were isolated, they would fire in response to 

such a powerful stimulation. But all L neurons of the same column are interconnected by strong 

blocking connections – they form the so called WTA (= “winner takes all”) ensemble. The purpose of 

the WTA ensemble is to guarantee that at most one neuron would fire at each network simulation step. It 

is realized due to a special inter-neuron arbitrage mechanism. This mechanism compares membrane 

potentials of the neurons ready to fire and selects the neuron with the greatest potential value. To make 

neurons slightly unequal, the aforementioned internal stochastic stimulation is introduced in the ArNI-X 

neuron model. Due to this random stimulation, there is a random winner in the WTA ensemble who fires 

and suppresses all the other neurons in the ensemble. Beside the BIASGATE neuron, the spikes from the 

label input node reaches also L neurons – but with 3 msec delay (after one of the L neurons has fired). 

These spikes come to special synapses of the L neurons called “dopamine”. But only the spike coming 

to the winning neuron has effect. This spike triggers the dopamine plasticity process in this neuron. In 

accordance with the dopamine plasticity rule, all plastic synapses having obtained spikes a certain time 

before neuron firing are potentiated if the neuron receives a dopamine spike shortly after that firing. As a 

result of this process, one learning neuron in the column corresponding to the class presented slightly 

potentiates synapses connected to the recently active input nodes. These weights are still insufficient for 

firing solely from the input stimulation. However, the next time when similar image will be presented, 

this winning neuron will probably have greater positive value of the membrane potential at the moment 

of obtaining the excitatory spike from the BIASGATE. Therefore, it will have high chances to become a 

winner again, thus further potentiating the same set of synapses. Here, we should mention another 

important feature of the ArNI-X plasticity model – the constancy of the total synaptic weight of one 

neuron. Whenever some synapses are strengthened, all the other synapses are uniformly weakened. It 

means that the neuron – winner not only becomes more sensitive to the first presented image but also 

becomes less sensitive to significantly different images. Thus, if the second presented image from the 

same class will have little resemblance with the first one, then the first winner will receive negative 

stimulation and, therefore, it will have less chances to win this time. Due to this mechanism, different L 

neurons in the same column learn to react to different instances of a target class. 

After some number of the plasticity acts described above, some L neurons acquire the ability to fire in 

response to input stimulation without help of BIASGATE neurons. In this case, the firing L neuron 

stimulates the OUT neuron of this column. It fires and blocks the BIASGATE neuron for all period of 

current image presentation because stimulation from BIASGATE is not needed anymore. 
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It remains to say that this scheme also has a protection against wrong L neuron firing. In fact, the 

described plasticity model consists of two components – anti-Hebbian plasticity and dopamine plasticity. 

Dopamine plasticity was briefly described above. The anti-Hebbian plasticity mechanism is also simple. 

Whenever a neuron fires, all its plastic synapses having received a spike shortly before this are 

depressed. It is just the contrary to the original Hebbian law stating that all synapses helping the neuron 

to fire are potentiated. But in our case, the anti-Hebbian rule is needed. Indeed, L neurons should react 

only to the correct images. The correct images are marked by the activity of the respective class label 

node which delivers dopamine reward to the L neuron. If an L neuron fired and did not receive the 

dopamine reward, it fired wrongly and, therefore, the synapses which forced it to fire should be 

suppressed. Thus, the complete picture is the following. When an L neuron fires (and this firing is not 

forced by a strong non-plastic synapse) all its synapses which contributed to this firing are depressed. 

They remain depressed if nothing more happens. But if, afterwards, this neuron receives a dopamine 

spike these synapses are potentiated. Hence, three possible scenarios are possible: 

• The neuron did not fire during input stimulation and was selected as a target for stimulation 

from BIASGATE. Only dopamine plasticity should work – to potentiate the synapses receiving 

spikes. It gives it chances to fire correctly next time. 

• The neuron fired during input stimulation but it was wrong (no dopamine reward). Only anti-

Hebbian plasticity works - synapses receiving spikes are depressed. It lowers the neuron’s chances to 

fire wrongly next time. 

• The neuron fired during input stimulation but it was right (dopamine reward followed). Both 

plasticity mechanisms work – but they work in the opposite directions so that nothing changes. The 

neuron works correctly – we should not modify it. 

Now, we consider how this network is described in ArNI-X language. This description includes the 

majority of implemented in ArNI-X network and neuron features. 

In this tutorial, the input spikes are not pure noise but encode information contained in files, therefore, 

the RECEPTORS node should describe it. Now, the input type is image. It means that the input file 

contains monochrome images stored in the uncompressed form one after one, 1 byte per pixel, by rows. 

The file name is specified in the source node. The file format is described in the node Special. It 

contains the tags width and height, defining the image size; offset in the file the image data starts 

from; time step count per image (ntact_per_image); time step count per image presentation – 

without silence period (image_presentation_time); and spike frequency corresponding to the 

maximum pixel brightness (= 255) – here, it is 1 kHz. 

However, in our case, it is not the only source of spikes. The network uses for learning also class label 

spikes. Their source is another input spike module called StateClassifier. It reads data from the 

file specified in the target_file node. It is a text file where each line contains label for the 

respective image (in the same order as in input image file). Besides that, it is necessary to specify the 

learning period length (learning_time). Since we use 60000 images for learning and each image 

corresponds to 15 emulation steps, the learning time equals to 900000. 
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Now, let us consider the network itself. Strictly speaking, in this tutorial we use an ensemble of 15 

networks with the similar structure instead of a single network. The decision of the whole ensemble is 

determined from votes of its members – every network votes and the majority wins. This measure helps 

eliminate rare accidental errors of individual networks. The ensemble size is set by the ncopies 

attribute of the NETWORK node. 

The networks populations and projections are described in the subsequent Section and Link nodes. 

We see that description of the L population contains many new parameters. The majority of them 

determine synaptic plasticity of L neurons. In order to clarify their meaning, we describe the ArNI-X 

plasticity model in more detail. 

The most important, in this plasticity model, the plasticity rules are not applied to synaptic weights 

directly. Instead, the plasticity mechanisms modify another property of synapses called synaptic 

resource. The value of synaptic resource W depends monotonously on the synaptic weight w. Different 

relationships between synaptic resource and synaptic weight are implemented in ArNI-X. In the given 

network, this dependence is expressed by the formula 

𝑤 = 𝑤𝑚𝑖𝑛 +
(𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)max⁡(𝑊, 0)

𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛 +max⁡(𝑊, 0)
. 

In this model, the weight values lay inside the range [wmin, wmax) - while W runs from -∞ to +∞, w runs 

from wmin to wmax (see the picture below, where wmin = -1, wmax = 2). 

 

Such an approach allows solving the important problem of catastrophic forgetting. Indeed, let us 

imagine that network was being trained to recognize something for a long time. As a result, the majority 

of synaptic weights became either saturated (equal to the maximum possible value) or suppressed. 

However, presentation of even few wrong training examples or examples containing other patterns or 
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simply noise is sufficient to destroy the weight configuration learnt and nothing can prevent it. The 

network will forget everything it has learnt. But in our model, when W is either negative or highly 

positive, synaptic plasticity does not affect a synapse’s strength. Instead, it affects its stability – how 

many times the synapse should be potentiated or depressed to move it from the saturated state. Thus, to 

destroy the trained network state, it is necessary to present the number of “bad” examples close to the 

number of “good” examples used to train it. This feature is most useful for unsupervised learning. Later, 

we describe another mechanism fighting catastrophic forgetting, more applicable to supervised learning. 

As it was said, there are several plasticity mechanisms in our model. The first one is Hebbian (or anti-

Hebbian) plasticity. Donald Hebb’s law of synaptic plasticity states that the synapses, which helped the 

neuron to fire, are potentiated (in the anti-Hebbian model, they are depressed). Since effect of a 

presynaptic spike on membrane potential decreases with time exponentially, we can conclude that 

synapses obtaining last spike long time (sufficiently greater than membrane potential decay time 

chartime) ago before neuron firing do not contribute to it. In our model, Hebbian plasticity affects the 

synapses obtaining spikes during last 3 * chartime msec before firing. But if a neuron emits spikes by 

dense packets (bursts or TSS - tight spike sequences) we treat every TSS as a single spike so that at most 

one weight modification of each synapse is caused by one TSS even if the TSS includes many spikes. 

All spikes separated by time ISImax or less form one TSS. Our version of Hebbian plasticity is very 

simple. Synaptic resource of every synapse having obtained a spike tH = 3 * chartime ago or less 

before TSS onset (or during the TSS) is increased by a constant not depending on exact moment of spike 

arrival. This constant dH depends on the basic neuron plasticity value 𝑑𝐻̅̅̅̅  and current value of a 

component of neuron state s called stability. This dependence is expressed by the formula 

𝑑𝐻 = 𝑑𝐻̅̅̅̅ min⁡(2
−𝑠, 1). 

The stability determines the general level of the neuron plasticity. It is also used to fight catastrophic 

forgetting – but in case of supervised or reinforcement learning. In this tutorial, its values remain low so 

that it does not significantly influence the learning process. The laws of its dynamics will be described 

later. 

Another component of ArNI-X synaptic plasticity mechanism is reward or dopamine plasticity. It is also 

very simple. When a neuron receives a spike via its reward synapse at most the time tD after the last 

spike in TSS, the resources of all its plastic synapses having obtained a spike during this TSS or not 

earlier than the time tH before the first spike in the TSS are changed by the value equal to the weight of 

this reward synapse. Again, every synaptic weight is changed at most once by one dopamine spike. The 

reward synapse weight may be positive or negative (as it is in our case). tD is called dopamine plasticity 

period. 

As it was said, in the present example the neuron stability does not play a significant role. Nevertheless, 

for sake of completeness, let us describe its dynamics. In this example, stability changes in two cases: 

• When neuron fires, the stability increases by the value of weight_inc multiplied by the value 

of stability_resource_change_ratio.  

• When the neuron is punished, its stability is changed (decreased) by the value of reward synapse 

weight multiplied by the value of stability_resource_change_ratio. 



TUTORIALS 

Page 13 

At last, we should mention two other features of the ArNI-X plasticity model.  

Constant Total Synaptic Resource. In order to introduce competition between synapses inside one 

neuron, we added one more component to the model of synaptic plasticity – constancy of neuron’s total 

synaptic resource. Whenever some synapses are depressed or potentiated due to the above mentioned 

plasticity rules all the other synapses are changed in the opposite direction by the constant value equal 

for all these synapses such that the total synaptic resource of the neuron is preserved. Effect of this rule 

can be controlled introducing imaginary unconnected synapses whose only role is to be a reservoir for 

the excessive (or additional) resource. The competitive effect is maximum when there are no such silent 

synapses and it vanishes with their number approaching infinity. 

Lower Excitability of Trained Neurons. As it was said, the crucial CoLaNET property is multiple 

recognizers belonging to the same target class (column) which should recognize different instances of 

this class. To provide CoLaNET with this property, L neuron should be sufficiently selective i.e. 

sensitive to their sub-class of the target class and insensitive to the other sub-classes. The former 

requirement is fulfilled due to high positive weights of the synapses connected with the input nodes 

active during presentation of objects from the sub-class recognized. In order to satisfy the latter 

requirement, the trained neurons are made less sensitive in general due to elevated threshold potential. 

The indicator of a trained neuron is presence of synapses with high positive weight. Therefore, a logical 

choice is to make the threshold potential uTHR dependent on the sum of positive synaptic weights (of 

plastic synapses only): 

𝑢𝑇𝐻𝑅 = 𝐻 + 𝛼∑max(𝑤𝑖, 0). 

Here, α is a small positive constant, H – the constant component of the threshold potential. 

But let us return to description of the L population. First of all, it is important that this population has a 

structure – it is not just a “flat” set of neurons but is subdivided into 10 columns as it was mentioned 

above. In our network, there are 20 neurons in each column. It can be said that L neurons form a 2-D 

lattice 10×20. This structure is similar to tensor organization of layers in traditional neural networks as 

they are described in the popular packages TensorFlow or Keras (but the role of this organization is 

completely different). To specify population structure, the node Structure is used. The structure type 

is set by the type attribute. Here, it has value “L” (lattice). The lattice dimensions are defined by the 

child dim nodes – from the lowest to the highest dimension. 

In order to exclude influence of one image to the subsequent one, the class label spike sends powerful 

inhibition to all L neurons (red arrows on the CoLaNET scheme). However, to make the starting states 

of all neurons equal, it is necessary to limit their membrane potential from below. It is made by the 

minpotential node. Its value is 0, therefore, L neuron membrane potential cannot be negative. 

The other parameters are relevant to the learning mechanism described above: 

stochastic_stimulation – specifies strength of the neuron stochastic stimulation – every time 

step the membrane potential is incremented by a value randomly distributed in the range (0, 

stochastic_stimulation). 

weight_inc – the Hebbian plasticity value. If it is negative, then plasticity is anti-Hebbian. 
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dopamine_plasticity_time - tD from the plasticity rule description above. Here, it equals to 10 

since the class label spikes comes on the 11th step after image presentation beginning. 

maxTSSISI - ISImax value (see above). Its value is 10 since there should be at most one 

Hebbian/dopamine plasticity act per synapse per image presentation. 

minweight and maxweight - wmin and wmax , respectively. 

nsilentsynapses – the number of the imaginary synapses consuming or supplying additional 

synaptic resource keeping its total value constant for one neuron. 

threshold_excess_weight_dependent – the constant α in the formula for threshold 

membrane potential. 

It was the description of the L population. The two other populations, OUT and BIASGATE, contain 

ordinary non-plastic LIF neurons – their descriptions are very short. 

The sets of inter-neuron connections (projections) are described in the subsequent Link nodes. Non-

plastic excitatory and inhibitory connections were considered in the previous tutorial, but in the present 

tutorial, three more connection types are used (specified by the type attribute of Link). These are 

plastic (the synapses which learn), reward (the dopamine synapses), and gating (the blocking or 

activating synapses).  

For plastic synapses, the original distribution of their resource may be specified in the IniResource 

node. The distribution type may be specified by the attribute type. In our example, all synaptic 

resources are initialized by the value corresponding to zero synaptic weight. 

The distinctive feature of CoLaNET is its structure. To support this structure, projections should obey 

certain requirements – they are called connections policies (set by the policy attribute). For example, 

mutual blocking connections between L neurons are organized in all-to-all manner but only within their 

column (between the neurons with the same indices inside lattice except the least significant one). This 

policy is all-to-all-sections. The class label input nodes are connected to L neurons by 

dopamine connections in such a way that the first node projects onto the first 20 L neurons, the second 

one – to the next 20 and so on. This is the policy aligned. But the strong inhibitory connections from 

class label to L obey the all-to-all policy. 

It is not difficult to see that the projection descriptions correspond to the network structure described 

above. 

The last thing specified in 3.nnc is Readout – the module processing activity of the output neurons. 

Again, the dynamic library implementing this processing should be specified. Here, it is also 

StateClassifier. Its purpose – to evaluate accuracy of classification performed by SNN in the 

form of spikes from the OUT population. This population should be specified in the output node. 

We launch the simulation by the command line 

ArNICPU ..\Tutorials -e3 -f900000 -E900000:MNIST.nns.csv 
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The option -f900000 tells that, at tact 900000, synaptic plasticity will be switched off. As we 

discussed above, it corresponds to the first 60000 images used for learning. The rest 10000 images will 

be used for testing the trained SNN, therefore, it should not use them for learning. The -E option is 

needed to export the network structure at tact 900000 (when it had learnt to classify MNIST digits) to 

the text file MNIST.nns.csv. We will use this comma-separated values (CSV) file to explore the 

plastic synapse weights.  

Since this network is much larger than the two previous ones, running this simulation on not very 

powerful central processor may take considerable time – 3 hours and more. For this reason, it is better to 

use GPU (launching ArNIGPU instead of ArNICPU), if it is available. 

Upon completion, the simulator returns the termination code. If StateClassifier is used as a 

readout, the termination code is determined by StateClassifier. It is classification accuracy 

(measured on the test subset) multiplied by 10000. We see that our network classifies MNIST digits with 

the accuracy 96.07%. It seems to be not very high result comparatively to modern convolutional 

networks. However: 

1. Only one training epoch is used in this tutorial (it is because SNNs are often used in incremental 

learning scenarios, where repetitive presentations of the same examples is usually impossible). 

2. The network is quite simple – it includes only 3300 neurons (the MNIST winners are much 

larger). 

3. It does not include convolutional layers – use of convolutional SNN would make this tutorial 

more difficult for comprehension. 

Therefore, in fact, 96.07% accuracy is a good result. 

It is interesting to look at the distribution of plastic synapse weights of L neurons recognizing different 

digits. Their values are contained in MNIST.nns.csv and can be extracted from there by the Python 

script MNISTweights.py. Since out network is an ensemble of 15 similar networks, we will look at 

only one of them depicting the weights of its 200 L neurons. Each row of the figure corresponds to one 

digit. 
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Red color encodes positive weights, blue – negative. We see that different L neurons recognize different 

writings of the respective digits – as it was expected for the CoLaNET architecture. 

NEURON MODEL 

The neuron model implemented in this package is a generalized version of simple but functionally rich 

model called LIFAT (Leaky Integrate-and-Fire neuron with Adaptive Threshold). Implementation of 

other models (e.g. Izhikevich neuron) is also possible but requires programming and, therefore, is 

outside of scope of this manual. LIFAT model itself is less functional than Izhikevich’s model, which 

can describe several qualitatively different neuron operation regimes, however, additional features 

introduced into it diminish this difference while retaining our model significantly simpler than 

Izhikevich’s. Besides that, the LIFAT model is implemented in the most advanced modern 

neuroprocessor Loihi (by Intel Corp.). 

Let us describe this model formally, but, at first, consider the synapse model. The simplest current-based 

delta synapse model is used for all excitatory and inhibitory synapses. Every time the synapse receives a 

spike, it instantly changes the membrane potential by the value of its synaptic weight, which may be 

positive or negative. The neuron state at any moment t is described by its membrane potential u(t) and its 

threshold potential uTHR(t). Dynamics of these values are defined by the equations 

{
 
 

 
 

𝑑𝑢

𝑑𝑡
= −

𝑢

𝜏𝑣
+∑𝑤𝑖𝛿(𝑡 − 𝑡𝑖𝑗)

𝑖,𝑗

+ 𝐼𝑛𝑜𝑖𝑠𝑒

𝑑𝑢𝑇𝐻𝑅
𝑑𝑡

= −𝑎⁡sgn(𝑢𝑇𝐻𝑅 − 𝐻) +∑𝑇̂𝛿(𝑡 − 𝑡̂𝑘)

𝑘
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and the conditions that u is hard limited from below by the value uMIN and that if u exceeds uTHR then the 

neuron fires (if the neuron is currently active – see below) and the current value of uTHR is subtracted 

from u. All potentials are rescaled so that after the long absence of presynaptic spikes u → 0 and uTHR → 

H = 8.531 (see the Tutorials for the discussion of this value). The meaning of the other symbols in the 

formula above is the following: τv – the membrane leakage time constant; a – the speed of decreasing 

uTHR to its base value H; wi - the weight of i-th synapse; tij - the time moment when i-th synapse received 

j-th spike; 𝑇̂ – uTHR is incremented by this value when the neuron fires at the moment 𝑡̂𝑘. It should be 

noted that this model should be rather called linearized LIFAT because threshold potential falls linearly, 

not exponentially. This feature makes hardware implementation simpler without noticeable impact on 

network behavior. The neuron may have source of its internal stochastic stimulation Inoise. It is 

implemented as a random number uniformly distributed in the range [0, snoise] which is added to u every 

simulation step. 

Out implementation of LIFAT has two additional features. Firstly, the memory property is added to this 

model. Neuron has the parameter called memory spike train period τM. If this parameter is defined (not 

equal to infinity), then after every firing, the neuron internal timer is reset to the value τM. When this 

timer reaches zero value, u is increased by a great constant. It is significantly higher than H (30 – in the 

current ArNI-X version) and, therefore, the neuron is forced to fire unless its current threshold potential 

is too high. It is equivalent to a very strong reflexive connection with the delay time equal to τM and the 

weight equal to 30 (it is prohibited in our package to create such reflexive connections explicitly). This 

feature in combination with threshold potential adaptivity allows implementing the mechanism of short-

term memory with controlled duration. Indeed, if 𝜏𝑀 < 𝑇̂ 𝑎⁄ , then at the moment of the timer reset, uTHR 

becomes higher and higher. Eventually, it becomes so high that even this imaginary strong reflexive 

connection cannot make the neuron fire. Therefore, the neuron can memorize that it received strong 

stimulation in the past, which forced it to fire, but the memory about it may last only a certain time 

interval. 

The other additional feature is the gating ability. Neurons have a state component called the activation 

counter A controlled by spikes coming at special gating synapses. When A is positive, the neuron is in 

its ordinary state and behaves as it is described above. If A is zero or negative then the neuron is in 

sleepy state. It means that it does not react to any incoming spikes (except spikes coming to gating 

synapses) and is not able to fire. While A is non-zero, it is changed by 1 towards 0. If A was 1 and 

becomes 0, it remains equal to 0 for indefinite time. If A was -1 and becomes 0 it is reset to a very great 

positive number (= +∞). Neuron may have synapses, which can change A (gating synapses). Their 

weight may be either negative or positive. If neuron receives a spike via a gating synapse with the 

negative weight and the current value of A is greater than that weight, A is set to the value of that weight. 

Therefore, in this case, the neuron becomes inactive and remains in this state the time equal to the 

absolute value of weight of that gating synapse (in msec). If the receiving gating synapse has positive 

weight and the current A is less than that weight, A is also set to the value of that weight. All this means 

that gating synapses can either activate neuron for the specified period or, conversely, block its activity, 

thus performing gating functions. Gating synapses can be considered as an ultimate version of strong 

excitatory or inhibitory synapses but with exactly controlled temporal characteristics and more 

deterministic effect on neuron state. Besides the gating synapses, a neuron can be inactivated by its own 

firing if its refractory period τR is positive. In this case, each neuron firing makes it’s A equal to -τR. 
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SYNAPTIC PLASTICITY RULES 

The most valuable ability of neural networks is their ability to learn. Learning in the traditional non-

spiking neural networks (artificial neural networks – ANN) is implemented due to the appropriate 

modification of synaptic weights of their neurons. In this sense, the SNNs do not differ from the ANNs – 

their synaptic weights are also adjusted during the learning process. However, the approaches to 

synaptic weight modification in ANN and SNN are completely different. Output value of ANNs is in 

fact a smooth function of its synaptic weights. It makes it possible to apply a gradient descent technique 

(the so-called backpropagation algorithm) to optimization of the synaptic weights. In contrast with them, 

SNNs are discrete by their nature. They produce spikes instead of real numbers. Therefore, the gradient 

descent algorithm cannot be used for SNN - the respective partial derivatives cannot be calculated. For 

this reason, the learning of SNN is based on completely different principles. The basic one is the locality 

principle reflecting discrete and asynchronous functioning of spiking neurons. It stipulates that 

modification of a synaptic weight must depend on properties and activity of the pre- and post-synaptic 

neurons only. 

In ArNI-X, excitatory and inhibitory synapses are plastic only if they are explicitly declared as plastic. 

Otherwise (by default), they are not plastic (fixed) – the plasticity rules do not affect them. Difference 

between plastic and fixed synapses is important as they play the different roles. Plastic synapses are 

connected to sources of signal conveying information about the external world used for learning. Fixed 

synapses are usually strong and used for some special needs when it is necessary to force a neuron to 

fire or prevent firing. If a neuron fires when it receives a spike via its fixed synapse, we will call it 

forced firing. 

The ArNI-X local synaptic plasticity rules (there are two kinds of them) are very simple and designed 

with a view to their efficient implementation in neuromorphic hardware. One of them works with the 

ordinary plastic excitatory and inhibitory synapses while the other requires presence of the special 

plasticity-modulating (reward or dopamine) synapses in the neuron. It is necessary to remind that, as it 

was discussed in the Tutorial, the plasticity rules are applied to value of synaptic resource instead of 

synaptic weight. Usually, the synaptic weight values are updated (calculated from the current synaptic 

resource value) when the changes of synaptic resources become too great. In addition, it should be noted 

that usually these plasticity rules act in combination. Let us consider them. 

Hebbian Plasticity  

The synaptic plasticity principle formulated by Donald Hebb claims that all synapses that helped the 

neuron to fire are strengthened. This principle got its empirical confirmation in the form of the STDP 

(Spike Timing Dependent Plasticity) plasticity model discovered in the end of last century in living 

neurons. In accordance with this rule, the synapses obtaining spikes short time before firing are 

potentiated, but if a synapse obtains a spike short time after firing, it is depressed. The rule is simple and 

useful; however, it becomes self-contradictory in the case of frequent firing as it is shown on the picture 

below. 
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It is why we bind the plasticity rule to postsynaptic spike trains instead of single postsynaptic spikes. We 

will refer to these spike trains as tight spike sequences (TSS) – saying about postsynaptic spikes emitted 

by the given neuron. Specifically, taking the constant ISImax (ISI = Inter-Spike Interval) as a measure of 

“tightness” of TSS, we define TSS as a sequence of spikes adhering to the following criteria:  

1. There were no spikes during time ISImax before the first spike in TSS;  

2. Inter-spike intervals for all neighboring spikes in TSS are not greater than ISImax;  

3. There are no spikes during time ISImax after the last spike in TSS. 

4. Forced firing terminates the current TSS. A stand-alone forced firing is also considered as a 

particular case of TSS however, as we will see, forced firing is treated by the plasticity rules in a 

special way. 

Besides that, there may be anti-Hebbian variant of this plasticity mechanism – depressing the involved 

synapses instead of potentiating them. 

The STDP and the similar rules are often used for unsupervised learning. The goal is to find a group of 

synapses, which often obtain spikes inside the same sufficiently narrow time window. If the spikes come 

almost simultaneously, the resulting membrane potential increase is sufficient for firing and as the result 

of Hebbian plasticity the participating synapses get more strength and their common participation in 

next firing becomes more probable. The standard STDP rule seems to fit this purpose very well, but after 

closer investigation, one its drawback becomes evident. In the beginning of the learning process, this 

rule works well. It really potentiates the synapses from that group of correlating synapses obtaining 

spikes inside the same time interval. But as their weight grow, the neuron begins to fire earlier inside this 

interval. Therefore, there will be synapses from the same group that obtain spikes after firing. In 

accordance with STDP, they will be suppressed (and strongly suppressed) although they should be 

strengthened. This negative effect leads to unstable learning. To overcome it we introduce the symmetric 

version of STDP. In our model, any synapse receiving a spike at the moment close to firing (no matter – 
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before or after) is potentiated. Besides that, it eliminates the above mentioned inconsistency of the 

standard STDP in case of frequent firing. 

With the described amendments (association with a TSS instead of a stand-alone postsynaptic spike and 

symmetry with respect to postsynaptic spikes), our synaptic plasticity model follows Hebb’s principle. 

Namely, it includes the following rules: 

1. The resource of any synapse can change at most once during a single TSS. 

2. The resources of only those synapses are changed which receive at least one spike during TSS or 

short time TH before the very first spike in the TSS. Goal of this rule is to reward (or punish) all 

the synapses which contributed to postsynaptic spikes in the given TSS. Therefore, the synapses 

having obtained spikes shortly before the TSS onset should be also modified. Effect of one spike 

to membrane potential decays with the time constant τv, hence TH = βτv., where β is a small number 

(3 – by default). 

3. All synaptic resources are changed by the same value dH independently of exact timing of 

presynaptic spikes. dH may be negative as well as positive. 

Dopamine Plasticity  

In case of Hebbian (or anti-Hebbian) plasticity, the direction of synaptic resource modification is always 

the same for the given neuron. However, in many learning tasks, more flexible weight adjustment is 

needed – when a neuron behaves correctly, the active synapses should be potentiated, otherwise they 

should be depressed.  

This flexible synaptic weight regulation is performed with help of special synapses called reward or 

dopamine synapses. These synapses may have positive or negative weight and spikes coming to them 

can increase or decrease synaptic resources of plastic synapses by the value proportional to their weight. 

So that the name “reward synapses” is not quite correct – these synapses may “reward” as well as 

“punish” plastic synapses. However, in contrast with Hebbian plasticity, implementation of dopamine 

plasticity is asymmetric – reward and punishment use different mechanisms called 2-factor and 3-factor 

plasticity rules. Choice of 2- or 3-factor rule is determined by the sign of the total weight of all 

dopamine synapses obtaining spikes at the given moment. 

2-factor Plasticity (Punishment)  

First, we consider the simpler one called 2-factor dopamine plasticity rule because it is based on two 

types of events – obtaining a spike by a plastic synapse and obtaining a spike by a reward synapse. 

2-factor dopamine plasticity rule is very simple. Whenever a reward synapse obtains a spike, the 

synaptic resources of all plastic synapses having obtained at least one spike during last TD msec are 

changed by a value proportional to the weight of this reward synapse (or to the sum R of weights of all 

dopamine synapses obtaining a spike). About the proportionality coefficient – see below. This rule has 

one exception – it is not applied if the most recent neuron firing was forced. 

3-Factor Plasticity (Reward) 

3-factor dopamine plasticity rule includes one more event that should happen in order to trigger weight 

changes – the neuron firing. More precisely, similar to Hebbian plasticity, 3-factor dopamine plasticity 
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rule is associated with a TSS instead of a single postsynaptic spike (which is a particular case of a TSS). 

3-factor dopamine plasticity is triggered by a spike incoming to a reward synapse but only if the neuron 

fired not more than TD msec ago. 3-factor dopamine plasticity rule changes the resources of all synapses 

contributing to the last TSS by the value proportional to the weight of the reward synapse. The meaning 

of the word “contributing” is the same as for Hebbian plasticity (see above). 

This asymmetry is a consequence of the basically different semantics of punishment and reward. If some 

neuron group should react by their activity to certain conditions, it means that each neuron in the group 

should recognized its own subset of these conditions (otherwise, several neurons would be functionally 

equivalent and, therefore, could be replaced by a single neuron). That is, if neuron firing is prohibited 

under certain conditions expressed by combination of synapses obtaining a spike that is indicated by a 

punishment spike, then the respective synapses of all neurons in the groups should be depressed (2-

factor rule). But if some neuron recognized the target conditions correctly by firing then only this neuron 

should be rewarded (3-factor rule). 

It is necessary to say that Hebbian plasticity and dopamine plasticity can be combined inside one 

neuron. 

Synaptic Resource Renormalization  

In order to strengthen competition between synapses, we introduced the postulate that the total synaptic 

resource of one neuron should not change in time. It means that if the resource of some synapse is 

increased then the resources of all other synapses should be appropriately decreased by an equal value. 

However, effect of this mechanism can be regulated in the following way. A neuron may have some 

number of unconnected plastic synapses. They have no presynaptic neurons and serve only as a reservoir 

for excessive synaptic resource (or as a source of additional synaptic resource deployed on the working 

plastic synapses). The renormalization procedure is invoked when amount of the synaptic resource to re-

distribute exceeds a certain threshold. 

Neuron Stability  

In the Tutorial devoted to unsupervised learning, we mentioned the problem of catastrophic forgetting 

and the concept of synaptic resource as a method to fight it. This method is efficient in the case of 

unsupervised learning because the asymptotic state of synapses of trained neurons in this case is 

saturated – close either to minimum (often – zero) or to maximum. However, supervised learning often 

requires exact setting of synaptic weights far from their minimum and maximum values. Therefore, an 

alternative mechanism for preventing catastrophic forgetting is needed. In order to implement such a 

mechanism, an additional component of neuron state is introduced. It is called the stability s. This value 

determines synaptic resource changes caused by the synaptic plasticity mechanisms considered above. 

The neuron plasticity falls exponentially with growth of s. For untrained neurons, s = 0. 

For example, the resource change dH in the Hebbian plasticity rule depends on s this way: 

𝑑𝐻 = 𝑑𝐻̅̅̅̅ min⁡(2
−𝑠, 1). 

Here, 𝑑𝐻̅̅̅̅  is the basic level of Hebbian plasticity.  
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For dopamine plasticity, the resource change is 𝐷min⁡(2−𝑠, 1), where D is the weight of the reward 

synapse obtaining the spike. 

The rules controlling changes of s are following: 

1. Non-positive s can only increase. 

2. The first firing in TSS (and the forced firing) changes s by 𝑟𝑑𝐻̅̅̅̅ , where r is a constant. 

3. When a neuron receives reward spikes, its stability changes accordingly to the table: 

 

The most recent 

firing was forced 

The R sign The stability change 

No Negative rR 

Yes Negative 0 

No Positive 2rR 

Yes Positive -rR 

 

These rules may seem complicated but they have a natural explanation. For example, since in our 

system, synaptic weights change discretely, the number of stability change acts should be proportional to 

the number of weight changes – it is why all stability change formulae have the same factor r. The form 

of these formulae follows from the learning purpose. For example, if some neuron should learn to fire at 

the correct moment, then the four situations are possible: 

• The neuron did not fire and it was right. Nothing happens. 

• The neuron did not fire but was expected to fire. In this case, we force the neuron to fire using 

the strong fixed excitatory synapse. All plastic synapses, which would help it to fire (the 

synapses having obtained spikes recently), are potentiated due to 3-factor plasticity. But this 

neuron behavior shows that it is not trained yet. Therefore, to facilitate its further training, its 

stability should be decreased. 

• The neuron fired but it was wrong. When the neuron fired it was not clear was it right or 

wrong. It is safer to think that it was wrong – because if this neuron will not receive reward in 

the near future, then it was a wrong firing. Therefore, when the neuron fires, the contributing 

synapses should be depressed and its stability lowered. 

• The neuron fired and it was right. In this case, it receives reward short time after it fired. Its 

weights should not change (because it has learnt already – it performs well) and its stability 

should be elevated. The later requirement is satisfied because in this case the stability increment 

is doubled – 2rR. (in case of balanced anti-Hebbian and positive dopamine plasticity - 𝑅 = −𝑑𝐻̅̅̅̅ ) 

It can be shown that the rules described above are consistent with the purposes of unsupervised and 

supervised learning. 
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Lower Excitability of Trained Neurons  

This feature was considered in Tutorial 3. The neuron’s threshold potential can be made dependent on 

the sum of positive synaptic weights (of plastic synapses only): 

𝑢𝑇𝐻𝑅 = 𝐻 + 𝛼∑max(𝑤𝑖, 0), 

where, α is a small positive constant. In this case, its own dynamics are eliminated 𝑇̂ = 𝑎 = 0. 

Synaptic Weight Quantization  

In Tutorial 3, we discussed the relationship between the synaptic weight w and the synaptic resource W. 

However, the formula given there, expressing a smooth dependence of w on W, is not the only variant of 

this relationship implemented in ArNI-X. The other variants are needed mostly in the case when the 

SNN are destined to be placed on a specialized neurochips where individual microprocessors 

(neurocores) have very limited number computational abilities. In this case, either this dependence 

should be much simpler or set of possible weight values should be very limited (weight quantization). To 

support this, three other dependences of w on W are implemented in ArNI-X in addition to the above-

mentioned one (called smooth): 

• clipped – 𝑤 = max(𝑤𝑚𝑖𝑛,min(𝑤𝑚𝑎𝑥,𝑊)); 

• quantized – 𝑤 = {

𝑤𝑚𝑖𝑛⁡𝑖𝑓⁡𝑊 < 0

𝑄⌊𝑙𝑜𝑔2(𝑊)⌋⁡𝑖𝑓⁡𝑙𝑜𝑔2(𝑊) < |𝑄| + 1

𝑤𝑚𝑎𝑥⁡𝑜/𝑤

, where Q is the set of possible weight 

values – these values are selected from the condition of minimality of the maximum difference 

between the weights calculated in this model and in the model smooth; 

• superquantized – 𝑤 =

{
 
 

 
 

𝑤𝑚𝑖𝑛⁡𝑖𝑓⁡𝑊 < 0
𝑤𝑚𝑖𝑛

2
𝑖𝑓⁡𝑊 < 2𝑞

0⁡𝑖𝑓⁡2𝑞 ≤ 𝑊 < 2𝑞+1
𝑤𝑚𝑎𝑥

2
𝑖𝑓⁡2𝑞+1 ≤ 𝑊 < 2𝑞+2

𝑤𝑚𝑎𝑥⁡𝑜/𝑤

, where q is a small positive integer 

determining quantization step. 

 

In the next chapter, we will show how the parameters of neuron model and synaptic plasticity model can 

be specified on the level of neuron populations and projections using NNC files. 

NETWORK STRUCTURE DESCRIPTION 

The simulated SNN structure is defined in a special Neural Network Configuration (NNC) file whose 

name should have the format <EmulationNo>.nnc, where EmulationNo – is an integer number. This 

file is a text file written in XML language. This chapter describes its syntax. 

Overall Structure of NNC Files  

The first line of an NNC file should be 
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<?xml version="1.0" encoding="utf-8"?> 

It says that it is an XML file with UTF-8 character encoding. 

The file should contain one highest level XML node with the tag SNN. This node may have one attribute 

model determining relationship between synaptic resource and synaptic weight (see the previous 

section). 

Inside the SNN node, there should be one or more RECEPTORS nodes, NETWORK nodes, and, optionally 

Readout node, which describe the input nodes (there may be several input node sections sending 

signals with different semantics), the components of the network, and the module obtaining output 

spikes, respectively. 

RECEPTORS – Description of Input Nodes  

А RECEPTORS node should have the attribute name defining name of the input node section, and may 

have the attribute n specifying number of input nodes in this section. If the latter is not set, it should be 

set by the module implementing this input node section (see below). 

А RECEPTORS node should include only one node with the tag Implementation. It should have 

only one attribute lib that specifies the dynamic library responsible for generation of input spikes. In 

this manual we consider only two such libraries – fromFile, which can read input from a file and add 

Poissonian noise, and StateClassifier. The latter is used in classification tasks - it provides spikes 

labelling current target class(es) and measures the network classification accuracy. 

An Implementation node should include only one node with the tag args with the attribute type.  

For fromFile, this attribute can take the following values: 

• none – No external input data (only Poissonian noise). 

• text – The input spikes are read from a text file. One line corresponds to one simulation step. 

The length of every line should be equal to the input node count. If the given input node should 

emit spike then that corresponding position in the file should be occupied by ‘@’ character. 

Otherwise, it should be ‘.’ character. 

• binary – The input spikes are read from a binary file. The binary file contains input signal in 

the form of bit mask – one bit for one input node – one after one. Bit record for one simulation 

step (one input signal portion) should have 64 bit (8 byte) alignment. Bit records for successive 

simulation steps go tightly one after one. 

• image – A special kind of binary input signal file – a set of monochrome images. See the 

Special tag below. 

The args sub-node in the case of the fromFile module contains various parameters of the input node 

section (all they are optional) in form of sub-nodes. They are: 

• history_length – number of iterations T (= msec) during which the input node section 

generates the input signal. This parameter is obligatory if the input node section emits pure noise 

– without reading spikes from a file. If T is less than the number of iterations for which input 
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spikes are contained in the file then only T first input signal portions are read from the file. If T is 

greater than the number of iterations for which input spikes are contained in the file and signal 

generation regime is normal (the mode node is not present), then T is made equal to number of 

input signal portions contained in the file. When input signal cannot be produced anymore, 

the emulation terminates. 

• meanings – name of the text file containing labels of the input nodes. This file should contain 

number of lines equal to number of input nodes – each line should contain identifier of the 

respective input node which will be displayed in the network activity log file (if the command 

line argument –v2 is used). By default, the input node label is the input node section named 

followed by the ordinal number of the node inside the section. 

• mode – the signal generation regime. This parameter can take the values repetitive or 

endless. If this XML node is present and its value is repetitive, then the signal recorded 

in the file (if its duration is less than the value of history_length) is read from the 

beginning again after it is completely read – until the total length of the input signal reproduced 

is equal to history_length. The endless mode means that after the input signal from the file 

is completely read, the input signal generation can continue (if history_length is greater 

than the recorded signal length) but it does not contain spikes (silent input signal).  

• noise – Poisson noise intensity f (kHz). If this parameter is present, the Poisson noise is added 

to the input signal. It means that for each input node and each iteration, the random number 

uniformly distributed in [0, 1] is generated. If it is less than f, a spike is emitted. 

• period – spike emission period P (msec). If this parameter is present, the first input node emits 

a spike every Pth iteration – in addition to spikes from the file and noisy spikes. 

• shuffle – if present, this node instructs the system to shuffle the input file contents (text lines, 

binary data portions or images) randomly. Optional random number generator seed value may be 

specified in it. 

• source – input signal file name. If it is not specified, stdin is used. 

• Special – if present, this node specifies a special format of the input signal file (determined by 

the type attribute). At present, this node can be included only one for type equal to image. In 

this case, the input signal file contains monochrome images stored tightly image by image, row 

by row. Every image is presented during a certain time period. Every pixel corresponds to one 

input node. Number of spikes emitted by this input node during this period is proportional to the 

pixel brightness b. The input nodes produce spikes by the following algorithm. Every input node 

has a state variable associated with it. Its initial value is 0. Every emulation step, it is 

incremented by the value gb, where g is constant. If its value reaches 1, then input node fires the 

the state variable is decremented by 1. The Special node should include the following sub-

nodes: 

o height – the image height (pixels). 

o image_presentation_time - time of presentation of one image (msec). 

o maxfrequency (optional) – the maximum input node firing frequency (kHz). Since 

brightest pixels have value 255, the constant g equals to this value divided by 255. The 

default value is 1. 



NETWORK STRUCTURE DESCRIPTION 

Page 26 

o ntact_per_image – time corresponding to one image presentation (msec). If this 

value is greater than image_presentation_time, then during the rest simulation 

time, the input nodes do not emit spikes. 

o offset (optional) – position of the first image in the file (bytes). Default = 0. 

o width - the image width (pixels). 

• tacts_to_skip – the number of input signal portions (simulation steps) recorded in the file 

which should be skipped (from the file beginning). 

If the input node section is implemented by the StateClassifier module, the args sub-node can 

contain the following parameters: 

• criterion – the classification accuracy evaluation. It determines how the simulation return 

code is evaluated (usually it equals to number of simulation steps executed, but in the case of 

StateClassifier readout, its meaning is different). The possible values are: 

o absolute_error – returned code is the fraction of correctly classified test examples 

multiplied by 10000. 

o weighted_error – returned code is the mean fraction of correctly classified test 

examples in each target class multiplied by 10000. 

o averaged_F – returned code is the sum of the F measures of classification accuracy in 

all classes weighted by example count in each class and multiplied by 10000. 

• learning_time – this simulation period from the simulation beginning is not used for the 

accuracy evaluation. 

• max_silence – the maximum allowed time period without spikes from the output 

populations. If the silence is longer, the simulation is terminated.  

• no_class – there may be several such nodes. They specify the target classes which will be 

ignored – the examples labelled by these strings will be considered as not belonging to any class. 

• prediction_file – the detail information on classification of test examples will be stored in 

this file. 

• sequential_test – if this node is present, it means that objects from one class are often 

presented in series. Therefore, in case of unclear prediction, it is reasonable to assign to the 

current example the same label as for the previous example. 

• shuffle – it has the same meaning as for fromFile and should correspond it. 

• spike_period – the first class label spike will be emitted after this time since the example 

presentation offset and after that will be emitted with this period. The default value is 10 that 

corresponds to the object presentation time in the CoLaNET protocol (see Tutorial 3). 

• state_duration – the total time period corresponding to one example presentation. The 

default value is 15 that corresponds to the CoLaNET protocol (see Tutorial 3). 

• states_to_skip – the number of lines in the beginning of the target class file which should 

be skipped (from the file beginning). 

• target_file – the file containing example class labels – one line per example. 
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NETWORK – Description of SNN Structure  

In this manual, it is assumed that the NETWORK node includes only one node with the tag Sections. 

In fact, there may be several NETWORK nodes and they can include other kinds of sub-nodes. The latter 

case corresponds to SNN sections implemented by dynamic libraries using the respective API, which is 

not covered by this manual, and, therefore, not considered here. 

The Sections node includes at least one Section node and at least one Link node. The Section 

nodes describe neuronal populations, the Link nodes – projections (set of connections between 

populations). 

Also, there is a special case of NETWORK node without sub-nodes and with the attribute saved. Value 

of this attribute is a name of a file containing a previously saved SNN (with the extension .nns – see 

below). In this case, the network will be restored from the file. 

The NETWORK node may have the attribute ncopies. If it exists, several instances of the network 

described by the NETWORK node will be created. Their count is the integer value of the attribute 

ncopies. The postfix #<instance number> will be added to population names in these instances in 

order to make the population names unique. 

Section – Neuronal Population Property Definition  

Any population should have a unique name specified by the attribute name. 

The population’s neuron properties are described in the sub-node props.  

The following parameters can be specified as the sub-nodes of props (see the notation used in the 

neuron model description): 

• bursting_period – memory spike train period τM (msec). By default, neurons have no 

capability of constant firing (and therefore, their τM = 0). However, if the memory property is 

present then the neuron of the population described have this ability, and the default value of τM 

is 9 msec. 

• chartime – the membrane leakage time constant τv (msec). The value of this node may be 

INFINITY. In this case, there is no membrane potential leakage. The default value is 1. Since 

every emulation step, the membrane potential is multiplied by 1 – 1 / τv, τv = 1 means that by 

default the membrane potential is zeroed before every emulation step. 

• dopamine_plasticity_time – TD (msec).  

• hebbian_plasticity_chartime_ratio – β (default = 3).  

• maxTSSISI – ISImax (msec) – the maximum inter-spike interval in TSS. By default, this value is 

0 – no TSS, only single postsynaptic spikes are taken into account. 

• maxweight – the maximum value of the plastic synapse weight wmax. 

• memory – the approximate duration of neuron memory implemented as a sequence of periodical 

firings (msec) – see the bursting_period parameter. memory can have the following 

values: 

o a number. This is memory duration in msec. 
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o INFINITY. In this case, the only possible way to stop the periodical firing is inhibition 

from some other neuron. 

o UNI(<min>,<max>). In this case, neuron’s memory duration value is a uniformly 

distributed random number from the range (min, max). 

o LU(<min>,<max>). In this case, natural logarithm of neuron’s memory duration value 

is a uniformly distributed random number from the range (ln(min), ln(max)). 

• minpotential– the minimum value of the membrane potential uMIN. The default value is very 

high negative number (no lower limit for the membrane potential). 

• minweight – the minimum value of the plastic synapse weight wmin. The default value is 0. 

• n – the number of neurons in the population. It is the only mandatory parameter. 

• nsilentsynapses – number of (imaginary) additional plastic synapses not connected to any 

spike source. They are used in the synaptic resource renormalization procedure as a reservoir for 

excessive synaptic resource (or as a source of synaptic resource deployed on the working plastic 

synapses). The default value is 0 that corresponds to exactly preserved neuron’s total synaptic 

resource. The value -1 means that the total synaptic resource constancy is not maintained. 

• nwquants – the number of intermediate synaptic weight values (not including wmin and wmax) 

in the quantized synaptic weight quantization model. 

• refractory_period – τR. 

• stochastic_stimulation – snoise. 

• stability_resource_change_ratio – the coefficient of proportionality r between the 

neuron stability change and synaptic resource change for the case of zero stability. 

• Structure – the population geometrical structure. If it is defined, it can determine the pre/post 

connection probabilities and the synaptic delays. This node should have one obligatory attribute 

type and optional attributes. The attribute type determines the type of structural organization 

of the population. At present, only one type is implemented – tensor (lattice) structure, 

corresponding to the value of type equal to L. For this structure type, the Structure node 

includes one or several nodes dim whose values should be integer numbers. These numbers 

define dimensions of the lattice whose nodes correspond to neurons from this population. 

Therefore, the product of all these numbers should be equal to the population size.. This structure 

is taken into account when inter-neuron connections are created (see below). 

• threshold_decay_period – the time tϴ necessary for the threshold potential to reach its 

basic value after a single stand-alone firing (msec). 𝑎 = 𝑇̂ 𝑡𝛩⁄ . 

• threshold_excess_weight_dependent – α. 

• threshold_inc – the threshold potential increment 𝑇̂. 

• weight_inc – the basic level of Hebbian plasticity 𝑑𝐻̅̅̅̅ . 

Link – Projection Property Definition 

Projection is a set of connections between neurons. One projection can include connections between two 

neuron populations (or between a population and itself). The connections belonging to one projection 

have similar properties, parameters either equal or taken from the same random distribution. The XML 

node Link describing a projection has two obligatory attributes and two optional ones. The two 
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obligatory attributes, from and to, specify the names of the populations connected. from may be the 

name of a population or an input node section. The two optional attributes are: 

• type – connection type (see the description of synapse types above). It may be plastic, 

reward or gating. If there is no type attribute, the synapses belonging to the projection are 

fixed. 

• policy – connection policy. It may be one of the following (see the picture below): 

o aligned. If the population are of the same size, then it is one-to-one projection. The 

neurons with the same index inside their populations are connected. If the presynaptic 

population is smaller then every neuron from it is connected to n neurons where n is 

integer part of the ratio of the postsynaptic population size and the presynaptic population 

size. Again, all neurons are selected in order of their indices inside their populations. If 

the postsynaptic population size is not a multiple of the presynaptic population size, some 

postsynaptic population neurons will stay unconnected. If the postsynaptic population is 

smaller, then the situation is mirror-symmetric.  

o all-to-all. All-to-all connections (but reflexive connections are prohibited!).  

o all-to-all-sections. This connection policy is only allowed if both connected 

populations have L structure (see the tag Structure inside Section) and the 

dimensions of these structures except the lowest one are the same. In this case, all-to-all 

connections among the neurons with the same sets of the L structure indices except the 

lowest one are created. For example, winner-takes-all blocking lateral connections can be 

made using this policy. 

o exclusive. If both connected populations have L structure with the same lowest 

dimension, then these are all-to-all connections excluding connections between the 

neurons in with the same lowest L structure index. Otherwise, these are all-to-all 

connections excluding connections between the neurons with the same index inside their 

populations. 

o exclusive-high. This connection policy is only allowed if both connected 

populations have L structure with the same highest dimension. These are connections 

between the neurons with the different highest L indices. 

o exclusive-sections. This connection policy is only allowed if both connected 

populations have the same L structure. These are connections between the neurons with 

the different highest L indices and the same values of all the rest indices. 

If the policy attribute is not defined, the connections between the populations are random. 

These connection policies are illustrated on the picture. Four lower schemes illustrate connections 

between populations with L structure. Different sections correspond to different higher L dimension 

indices while different positions inside sections – to lower dimension indices. 
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Inside the Link node, there should be nodes 

describing the projection properties: 

• Delay – synaptic delay distribution (in 

msec). This node should have the attribute 

type, which can take one of two values – 

uni or ln. The former corresponds to 

uniform distribution, the latter – to log-normal 

distribution. In the first case the node Delay 

should include the nodes min and max, 

defining the range of delays. If their values are 

equal then all delays are set to this number. In 

the case of log-normal distribution, there 

should be the sub-nodes mean (with the 

numeric value M) and stddev (with the 

numeric value d). The random delays are 

generated using the formula Mexp(ℕ(d)), 

where ℕ(d) is a normally distributed random 

value with the center in 0 and the standard 

deviation d. The random delay is hard limited 

from above by the value 30 msec – the longest 

possible delay in ArNI-X. 

• IniResource – initial synaptic resource 

distribution. This node should have the 

attribute type, which can take one of two values – uni or dis. uni corresponds to uniform 

distribution. In this case, the node IniResource should include the nodes min and max, 

defining the range of initial resource values. If their values are equal then all initial resources are 

set to this number. dis means discrete distribution. If type=”dis”, the node IniResource 

should contain one node default and, optionally, several nodes value. Every value node 

should have the attributes v and share. The attribute share should be a number from the 

range (0, 1). It is the probability that the initial value of a synaptic resource equals to the value of 

the respective attribute v. The sum of all shares should not exceed 1. If the sum is less than 1, 

then a synaptic resource takes the value default with the probability equal to the difference 

between 1 and this sum. By default, synaptic resources are initialized by 0. 

• maxnpre – the maximum number of synapses belonging to this projection per neuron. This 

property can be set only for the default connection policy. The default value is very great (no 

limits on synapse counts). 

• probability– the probability that two given neurons from the populations from and to will 

be connected. This property must be set only in the case of the default connection policy. 

• weight – the synaptic weight. This property must be set for all projection types except 

plastic (for plastic connections, the initial resource is specified instead of weight). 

aligned

all-to-all

all-to-all-sections

exclusive (outcoming connections from the neurons 
with only one value of highest L index are shown)

exclusive-sections

exclusive-high (outcoming connections from the neurons 
with only one value of highest L index are shown)
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SIMULATOR COMMAND LINE ARGUMENTS 

The emulator command line has the syntax ArNI(C|G)PU <ExperimentSeriesDirectory> <Options>*. 

ArNICPU preforms the simulation on CPU, ArNIGPU – on GPU. ExperimentSeriesDirectory should 

contain all NNC files belonging to one emulation experiment series. The Options are following: 

-C(<CardNo>[,<CardNo>]|N<NCores>). The first form specifies GPU ids used for emulation (e.g. -

C0,2). The second – number of CPU cores used (-CN10). By default, all available cards/cores are 

used. 

-E<IterationStep>:<FileName> - used to export network configuration at IterationStep to FileName. If 

this option is used, the current directory should contain the dynamic library NetworkExporter, 

performing the network state export. The default version of this library shipped with this distribution 

package saves the network state in CSV format.  

-e<ExperimentNo>. The configuration file <ExperimentNo>.nnc is used. It is the only mandatory 

option. 

-F<MonitoringPeriod>. Sets the periodicity of network status saving (msec). The default value is 

200000. 

-f<NetworkFixingIteration>. If present this option sets the emulation iteration number after which the 

network becomes non-plastic – all its synaptic weights values are fixed. 

-P(b|t|l)[<iterbeg-iterend>]. This option controls network activity recording. The letters b, t or l 

determine the recording format. The text format (t) was described in Tutorials. In case of binary format 

(b) the network neuron firings are stored as bit masks in the file spikes.< ExperimentNo>.bin. The 

first 4 bytes of this file is the neuron count in the network. After that the bit masks go sequentially with 

8-byte alignment. l corresponds to the list format (spikes.< ExperimentNo>.lst). In this case, the 

resulting file contains one line per neuron. The i-th line contains iteration numbers of all i-th neuron 

firings consecutively in the form of comma separated values. By default, the recording is carried out 

during the whole emulation, but its period can be specified explicitly. 

-R[S][<Seed>]. Using this option, the emulation can be randomized (due to random resetting of the 

internal random number generator). Using -RS, the input spike sources can be also randomized. If Seed 

is specified, this randomization is deterministic. 

-r. This option saves input node activity recording in the same format as for network activity. The base 

name of the resulting file is receptor_spikes. 

-T<TerminationIterationNo>. This option allows to stop the emulation at the iteration number specified.  

-v(0|1|2). This option sets the emulation output level. In the case of the zero value (default), no 

output is produced (except, maybe, the activity record file – see the option P). Value 1 adds the 

monitoring file (monitoring.< ExperimentNo>.csv). Value 2 adds the verbose log file 

<ExperimentNo>.log containing records of all events (firings, synaptic plasticity acts etc.). It may be 

really huge. 


