ARNI-X: A SIMULATOR FOR
SPIKING NEURAL
NETWORKS

By Mikhail Kiselev

ArNI-X: A simulator for spiking
neural networks

VERSION 3.0

CONTENTS

00T o V4 o o | PP iii
INErodUCHION. ... e 1
GENEral INFOIME@LION.o oottt 1
INSTAIIALION ottt 1
Running SNN Emulation usSing ArlNI-Xcooo oottt 1
01 o 1 - 1R 2
N (e L= A L7 o o 2
Liquid State MaAcCRINecooooeeeeeeeeeeeeeeeeeeee ettt 3
Supervised Learning — Written Digit ClasSificationccccooiuimeeiieieieiiiiiiiiieeees 5
Neuron Model ... s s s s s s s r s s s n s s as 16
Synaptic Plasticity RUIES ..o e 18
Hebbian PIaStCILycooeii et 18
Dopaming PIASHCILYoe et 20
Synaptic Resource Renormalizationcooo oo 21
NeUron Stabilityo.eeee ettt e e e eeeeeeinsnnnenannen 2
Lower Excitability of Train€d NEUIONS................oeeiieeeeeeee et 23
Synaptic Weight QUantizationcoeiiiiiiiieeeeeee e eeeeeeeeesininaaaanannnnn 23
Network Structure DescCription ... i rn e 23
Overall Structure Of NNC FileSccoeieieeieiii i 23

Page 1

CONTENTS
RECEPTORS — Description of Input NOJEScccviviiiiiiiiiiieeiiiiiiiieeaaeaaannnn. 24
NETWORK — Description of SNN Structurecccoeveiiiiiiiiiieeiieiieeeeeevennnn. 27

Simulator Command Line Argumentsc.cooioiiiiiiiiiiiii i i s r s s nanrnnnes 31

Page li

COPYRIGHT
Copyright

Copyright © 2007 — 2025 Mikhail V. Kiselev

Mikhail Kiselev is author and owner of ArNI-X.

The third party packages used:

1. Boost C++ library (license).
2. Pugixml library () under the MIT license. Copyright (C) 2006-2018 Arseny
Kapoulkine

Page iii

https://www.boost.org/users/license.html
http://pugixml.org/

INTRODUCTION

INTRODUCTION

The ArNI-X system is used to simulate spiking neural networks (SNN) on CPU and GPU. For sake of
maximum performance, it is written in the C++ and CUDA programming languages. At present, there
exist versions for Windows and Linux. There are 3 modes to use ArNI-X corresponding to different
trade-offs between flexibility and ease of use:

e XML mode. In this regime, no programming is needed. The network structure is defined in a
special XML-based declarative language using the built-in models of neurons and synaptic
plasticity and combining various standard neuron connectivity patterns. The present manual
describes only this mode of ArNI-X usage.

e API mode. In case of custom neuronal structures, non-standard input spike sources and network
activity post-processors, it is possible to implement all these features using the C++ API
provided. The neuron and synaptic plasticity models are standard.

e Source modification mode. If the emulated neuron model does not fit the model class
implemented in ArNI-X, the source modification will be required. The ArNI-X code is written so
that to make the process of new model implementation as easy as possible but discussion of the
respective techniques is beyond the scope of this manual.

The implemented neuron models are rather simple and are hardly suitable for detailed
neurophysiological modelling. ArNI-X is more oriented to practical applications, creation of prototypes
of SNN-based devices solving real-world problems. A separate important goal is prototyping possible
implementation of SNNs on modern (e.g. Inlel’s Loihi) and future neuroprocessors. Keeping it in mind,
we tried to make the models of neurons and synaptic plasticity as simple and hardware-friendly as
possible.

In order to illustrate how to emulate SNN using ArNI-X, we include three simple examples in the
Tutorials. It is strongly recommended to read the Tutorials first. The reader of this manual is
assumed to have basic knowledge of the SNN theory. More non-standard or advanced concepts are
explained as they appear in the text.

No special installation procedure is required — just the corresponding archive file unpacking with
conserved directory structure.

This system uses boost libraries. If boost is not installed then the libraries in the boost folder (in the
distribution package for Linux) should be copied to some place from which the OS loads shared
libraries.

ArNI-X executable modules are realized as console applications. They are launched in a directory that
will be referred to as working directory. All simulation results are saved in this directory. It is assumed
that computational experiments with SNNs go in series such that every individual simulation run has the

Page 1

TUTORIALS

series name and the numeric id in the series. In order to run a simulation, the user should specify the
SNN structure using a special file <experiment numeric_id>.nnc. All nnc files related to one
experiment series should be in separate directory. The dynamic libraries fromFile and
StateClassifier from the distribution package should be copied into this directory. The nnc files
contain SNN structure definition in the XML language; the format of these definitions is described in the
subsequent sections of this manual. The simulation is performed by the executable files ArNICPU (for

CPU) or ArNIGPU (for GPU). The experiment series name and the experiment id are specified as
command line arguments (see below).

The simulation duration can be specified in the command line, as well.

The GPU version works with NVIDIA GPUs with compute capability at least 5.2.

TUTORIALS

The network configuration (.nnc) files used in the Tutorials are in the sub-directory Tutorials of the
ArNI-X root directory. Tutorial #1 illustrates a network consisting of a single neuron. It is described in
the file 1.nnc. You can change the neuron parameters and see how its activity changes. The Tutorials
works on any computer even without GPU and therefore are based on the CPU version of the simulator
ArNICPU. We recommend launching the simulator from the Workplace sub-directory. It can be done
by the command line

ArNICPU . \Tutorials -e1 -Pt

In the Linux systems, this line should be prefixed by ./ and the slash should be used instead of the back
slash. This command line means that the configuration file . . \Tutorials\1.nnc will be used and
the text file containing network activity record will be created (-Pt).

Text network activity protocol is the simplest form of recording network activity. Every its row
corresponds to one simulation step, every column corresponds to a neuron. If the given neuron fired on
the given step, it will be denoted by the character ‘@’ in the respective position. Otherwise, the character
would be ‘.’

The nnc files are written in XML language. The top level node is always SNN.

The input spike sources are defined in nodes RECEPTORS. Every receptor section should have a name
(here, it is R) and input node count (10 — in our case). Input spike sources are implemented as dynamic
libraries. Details of the implementation are described in the node ITmplementation. The present
manual covers only two input spike source types — fromFile and StateClassifier (see Tutorial
#3). The fromFile source reads input spikes from file and adds Poissonian noise to them. If the input
type is “none” (the attribute of the args node), only Poissonian noise is sent to the network. The
noise node inside args node defines the noise intensity. Namely, this number fis probability of input
spike from one node in one emulation step. Henceforth, we will take each emulation step equal to 1

Page 2

TUTORIALS

msec. Thus, the mean noise frequency for each input network node is 300 Hz. The history length
node specifies the emulation duration. It is equal to 1000 (=1 sec).

The network itself is described inside the NETWORK node, particularly, in the Sections node. There
may be other nodes inside NETWORK except Sections, but they are used to describe network parts
implemented by separate dynamic libraries — this feature is not covered by the present manual. The
Sections node includes two types of nodes — Section and Link. The former describes neuron
populations (or network sections), the latter — connections between populations (also called projections).

Our example contains only one section consisting of one neuron. Its name is neuron. The section
properties are defined in the props node. In our case, this single neuron is the simplest leaky integrate-
and-fire (LIF) neuron. This neuron has only one property — membrane potential decay time constant.
Here, it equals to 10 msec (see the node chartime). Each Section node should contain the n node,
which specifies the number of neurons belonging to this section.

Every Link section defines one projection type. Projection always connects neurons from two neuron
sections or an input node section with a neuron section (projections from a neuron section to itself are
also allowed). In our example, the only projection is from input nodes to our single neuron. The
connection policy is all-to-all. Connections (projections) also have some properties. The most important
one is the synaptic weight. In our neuron model, it is a value by which the membrane potential changes
when the synapse receives a spike.

When the membrane potential reaches the threshold value H, the neuron fires and the membrane
potential is decremented by H. In the LIF neuron model implemented in ArNI-X H = 8.531. Such a
strange value is explained by historical reasons. On the early stages of our research project, we
experimented with analog neurons implemented in hardware with fixed threshold potential equal to
0.8531 Volts. This constant then migrated to numerous and diverse software models so that even after
end of our hardware experiments we decided not to change this value to, say, 1 because it would require
too many changes in many places. If the threshold equal to 1 or to 0.02 Volts (the difference between the
threshold and rest potentials in living neurons) seems more preferable, it is easy to get just by
multiplying all synaptic weights by the respective constant.

After the simulation using the command line above, you see the new file spikes.1.txt. This file
contains only one column showing activity of the neuron. Counting number of the ‘@’ characters we
obtain the mean neuron’s firing frequency equal to 299 Hz. Varying the input synaptic weight, you can
see how the neuron activity changes.

It should be noted that in the present version of ArNI-X for Linux, a small bug exists, which sometimes
requires execution of the command reset in the terminal after running the emulator.

In the previous tutorial, we worked with a single neuron. The present tutorial is devoted to exploration of
behavior of many interconnected neurons. A large ensemble of chaotically interconnected neurons can
be used for classification of spatio-temporal patterns. The idea of this classifier (it is called Liquid State
Machine) is the following. Changing in time streams of input spikes which reflect dynamics of a certain

Page 3

TUTORIALS

process are sent to input nodes of the chaotic SNN. This stimulation induces network activity. Since the
SNN is recurrent, it has memory in the sense that its current activity depends on current stimulation as
well as on stimulation in more or less distant past. Signals travelling in the SNN keep information about
recent input spikes. Current network activity measured in terms of the mean firing frequencies of its
neurons is different for different dynamics of input spike streams in the recent past, and therefore, it can
be used by an external classifier for recognition of spatio-temporal patterns. Of course, this mechanism
works only in the networks with certain characteristics of their neurons and connectivity. It makes
exploration of properties of such chaotic networks important.

In this tutorial, the chaotic SNN described in the file 2 . nnc includes two neuron populations —
excitatory and inhibitory. The synaptic weights of connections from the former neurons are positive,
from the later — negative. The names of these populations are E and I, correspondingly. Excitatory
neurons are stimulated by Poisson noise — as in the previous tutorial. But these connections are not “all-
to-all”. The projection property probabi 11ty determines probability that the given input nodes is

connected to the given neuron. There are 700 excitatory neurons and 300 inhibitory neurons in the
network.

However, this time, excitatory neuron model is more complex than simple LIF. Threshold potential of
these neurons is not constant. Every time the neuron fires it is incremented by 1 (see the
threshold inc parameter); after that it linearly drops to its rest value 8.531. The speed of this
decrease is controlled by the parameter threshold decay period. Namely, every emulation step,
threshold potential decrease by the value of threshold inc divided by the value of

threshold decay period. This model is called LIFAT (leaky intergrate-and-fire neuron with
adaptive threshold). This feature provides the network with the homeostatic property — it is hard for too
active neurons to increase their activity more because of the high value of their threshold potential.

The file 2 . nnc describes connections between these two kinds of neurons in four L.i nk XML nodes.
We see that all postsynaptic connections of excitatory and inhibitory neurons have identical properties. It
should be noted that excitatory connection have another important property, in addition to synaptic
weight. It is synaptic delay — number of emulation step necessary for transition of a spike from the
presynaptic neuron to the postsynaptic neuron. By default, it is 1 but for excitatory connections in this
example it is a random value from the range [1, 30]. We see also that inhibitory connections have the
great negative weight.

Run the simulation by the command line

ArNICPU ..\Tutorials -e2 -Pt

Now let us look at the firing frequency dynamics for the E and I populations. It is drawn by the python
script DrawSectionActivities.pyiftorunitinthe Tutorials directory (it may require
installation of some additional python packages). Here it is:

Page 4

TUTORIALS

100

| Ly

0 50 100 150 200 250 300

We see that the E population demonstrates non-trivial rhythmic behavior with the frequency about 20
Hz.

In the previous tutorials, we considered behavior of networks which did not change during emulation.
However, the most valuable property of neural networks is their ability to learn via the appropriate
modification of their synaptic weights. This ability is demonstrated in the present tutorial for a case of
supervised learning. In this learning regime, several different classes of objects are presented to the
network in the form of spike streams from its input nodes. After presentation of each object, a special
separate input node emits spike indicating the class which the presented object belongs to. During the
learning process, network’s synaptic weights should be adjusted to form specific reaction of network to
objects from different classes — there should be neurons in the network which respond by firing to
presentation of objects from one specific class.

In this tutorial, we use the well-known image set called MNIST. It contains 60000 small monochrome
images of hand written digits (0 — 9) used for learning and 10000 digit images used for testing. Each
image has size 28%28 pixels, therefore, the network has 784 input nodes — one input node corresponds to
one pixel. Each image presentation lasts 10 msec. The probability that the given input node emits spike
in one emulation step is proportional to the pixel brightness and is equal to 1 for the brightest pixels.
Besides that, the network has 10 additional input nodes serving for labelling the image presented. Each
label node emits spike just after presentation of an image from the corresponding class. Here are
examples of these images:

Page 5

TUTORIALS

QWAL ~e NI G £
DO QNN PU--0a.L
O AQu=—U FW O kO
DRV PP s ne —0—§
NSNQORDBNAOUWNVPON o
ANOPO VWA NWNON L0
AR =4 QWO AN BN
QW WwWNo NI ¥
YournP—twRR~NLLHG
L AN GO ro N hoseNN~~
PN W ENL PN gU ool 6
NORTS—WN Dok~ D
QWOOoNUWLYPLTTOIN W— 2
QMR QYW R NSO,
BN~ ELoWPR~&

ns(fsdrlwonmsPoe—P

Vo—opUero0naoWL-—
~J e RNV =Nt ODNPD
WN=Z2PNOI -0V WWOoN
DO~ uQorINIPUHLPN
BVvOoO— Wiy et1%Qw~0O
cheoLoNIPNPee~xeQw
NP —F oYL~y
TR LLHNOBNS —~P-o WP
o 0~ Wed) e BNOY L&) =)W
PN <DL/ TN SNWRY
SR ANOEFroNIN0OLE~0 Q&
TN ~Roow—o0 NS\
DWW ONaan LA D~
NN FUEN=TNEDAS

U— 4 NWAOO—-A ¢ ndh o
NV rweVDesWwea YWy

The images in the uncompressed form are stored in the binary file MNIST . bin. Image pixels are stored
row by row, 1 byte per pixel. Image labels are stored in the text file MNIST . target — one line per
image.

This supervised classification learning problem will be solved by the network specially designed for
classification tasks. Its architecture is called CoLaNET (Columnar-Layered NETwork). The network
structure defined in the file 3 . nnc is briefly described below.

The network consists of several identical structures called columns. One column corresponds to one
target class. Thus, if we apply this network to MNIST there will be 10 columns in the network. Every
column contains 3 kinds of neurons organized in 3 layers.

Page 6

TUTORIALS

CLASS LABELS

K\\\

DECISION

ouT

/e

learning
neurons

The structure of one column is shown below.

Page 7

TUTORIALS

CLASS DECISION
LABEL BIASGATE
R~
\ .
d4
connection types
== strong excitatory
d3 —> excitatory

=3 blocking

delayed strong
inhibitory
delayed
dopamine

plastic connections

INPUT

We see that it includes several neurons labelled by the letter L — which means “learning neurons”. While
one column corresponds to one target class, one L neuron corresponds to significantly distinctive
instances (sub-classes) of one class. All neurons are described by the simplest LIF (leaky integrate-and-
fire) model with slight modifications described later.

We begin the description with the working regime assuming that all L neurons have correct values of
synaptic weights (which are the result of the learning process considered later). In this regime, the
network behavior is simple. The object description has the form of spike trains emitted by input nodes
(the blue rectangle at the bottom). If the L neurons have right values of their synaptic weights, then only
an L neuron belonging to the correct column will fire in response to this stimulation. It will cause firing
of the OUT neuron which signals presentation of an object of the corresponding class.

Now discuss the learning process. In this process, the network obtains the information about the current
object as well as the information about class (label) of this object. As it was said, the latter has the form
of a single spike emitted by the respective input node encoding the current class label just after the
object presentation.

Here, we encounter the first significant distinction from the classification process in the traditional
neural networks. The traditional formal neurons have no internal dynamics — their output depends only
on the current values of their inputs and does not depend on the previous input values. In contrast,
spiking neurons are dynamical systems — their state depends on their history. Therefore, in the case when
the consecutive examples presented to the network are independent (as they are in typical machine
learning tasks), the presentations of two consecutive examples should be separated by a certain period of
“silence” — absence of any spikes. It is necessary to exclude influence of the previous object on
classification of the current object. In our case, every example is presented during 10 msec, and the
silence period which is 5 msec. Moreover, in order to completely erase information about past image,

Page 8

TUTORIALS

the active input node send powerful inhibitory signal to all L neurons. This signal propagates 4 msec so
that it reaches L neurons just before the next image presentation. The L neurons have the strict lower
boundary of their membrane potential equal to O that guarantees their reset after obtaining a strong
inhibitory spike.

At the beginning of the learning process, all weights of all plastic synapses (only neurons from the
lowest layer have plastic synapses) are zero. Therefore, the stimulation from the input cannot make them
fire. However, the L neurons have two other sources of stimulation — their internal stochastic stimulation
(implemented as small random number added to membrane potential every simulation step) and one of
the class label nodes. The latter sends a spike to the BIASGATE neuron of its column (the 2" layer).
This spike forces the BIASGATE neuron to fire and send, in its turn, spikes to strong excitatory
synapses of all L neurons in its column. If the L neurons were isolated, they would fire in response to
such a powerful stimulation. But all L neurons of the same column are interconnected by strong
blocking connections — they form the so called WTA (= “winner takes all”’) ensemble. The purpose of
the WTA ensemble is to guarantee that at most one neuron would fire at each network simulation step. It
is realized due to a special inter-neuron arbitrage mechanism. This mechanism compares membrane
potentials of the neurons ready to fire and selects the neuron with the greatest potential value. To make
neurons slightly unequal, the aforementioned internal stochastic stimulation is introduced in the ArNI-X
neuron model. Due to this random stimulation, there is a random winner in the WTA ensemble who fires
and suppresses all the other neurons in the ensemble. Beside the BIASGATE neuron, the spikes from the
label input node reaches also L neurons — but with 3 msec delay (after one of the L neurons has fired).
These spikes come to special synapses of the L neurons called “dopamine”. But only the spike coming
to the winning neuron has effect. This spike triggers the dopamine plasticity process in this neuron. In
accordance with the dopamine plasticity rule, all plastic synapses having obtained spikes a certain time
before neuron firing are potentiated if the neuron receives a dopamine spike shortly after that firing. As a
result of this process, one learning neuron in the column corresponding to the class presented slightly
potentiates synapses connected to the recently active input nodes. These weights are still insufficient for
firing solely from the input stimulation. However, the next time when similar image will be presented,
this winning neuron will probably have greater positive value of the membrane potential at the moment
of obtaining the excitatory spike from the BIASGATE. Therefore, it will have high chances to become a
winner again, thus further potentiating the same set of synapses. Here, we should mention another
important feature of the ArNI-X plasticity model — the constancy of the total synaptic weight of one
neuron. Whenever some synapses are strengthened, all the other synapses are uniformly weakened. It
means that the neuron — winner not only becomes more sensitive to the first presented image but also
becomes less sensitive to significantly different images. Thus, if the second presented image from the
same class will have little resemblance with the first one, then the first winner will receive negative
stimulation and, therefore, it will have less chances to win this time. Due to this mechanism, different L
neurons in the same column learn to react to different instances of a target class.

After some number of the plasticity acts described above, some L neurons acquire the ability to fire in
response to input stimulation without help of BIASGATE neurons. In this case, the firing L neuron
stimulates the OUT neuron of this column. It fires and blocks the BIASGATE neuron for all period of
current image presentation because stimulation from BIASGATE is not needed anymore.

Page 9

TUTORIALS

It remains to say that this scheme also has a protection against wrong L neuron firing. In fact, the
described plasticity model consists of two components — anti-Hebbian plasticity and dopamine plasticity.
Dopamine plasticity was briefly described above. The anti-Hebbian plasticity mechanism is also simple.
Whenever a neuron fires, all its plastic synapses having received a spike shortly before this are
depressed. It is just the contrary to the original Hebbian law stating that all synapses helping the neuron
to fire are potentiated. But in our case, the anti-Hebbian rule is needed. Indeed, L neurons should react
only to the correct images. The correct images are marked by the activity of the respective class label
node which delivers dopamine reward to the L neuron. If an L neuron fired and did not receive the
dopamine reward, it fired wrongly and, therefore, the synapses which forced it to fire should be
suppressed. Thus, the complete picture is the following. When an L neuron fires (and this firing is not
forced by a strong non-plastic synapse) all its synapses which contributed to this firing are depressed.
They remain depressed if nothing more happens. But if, afterwards, this neuron receives a dopamine
spike these synapses are potentiated. Hence, three possible scenarios are possible:

e The neuron did not fire during input stimulation and was selected as a target for stimulation
from BIASGATE. Only dopamine plasticity should work — to potentiate the synapses receiving
spikes. It gives it chances to fire correctly next time.

e The neuron fired during input stimulation but it was wrong (no dopamine reward). Only anti-
Hebbian plasticity works - synapses receiving spikes are depressed. It lowers the neuron’s chances to
fire wrongly next time.

¢ The neuron fired during input stimulation but it was right (dopamine reward followed). Both
plasticity mechanisms work — but they work in the opposite directions so that nothing changes. The
neuron works correctly — we should not modify it.

Now, we consider how this network is described in ArNI-X language. This description includes the
majority of implemented in ArNI-X network and neuron features.

In this tutorial, the input spikes are not pure noise but encode information contained in files, therefore,
the RECEPTORS node should describe it. Now, the input t ype is image. It means that the input file
contains monochrome images stored in the uncompressed form one after one, 1 byte per pixel, by rows.
The file name is specified in the source node. The file format is described in the node Special. It
contains the tags width and height, defining the image size; of fset in the file the image data starts
from; time step count per image (ntact per image);time step count per image presentation —
without silence period (image presentation time);and spike frequency corresponding to the
maximum pixel brightness (= 255) — here, it is 1 kHz.

However, in our case, it is not the only source of spikes. The network uses for learning also class label
spikes. Their source is another input spike module called StateClassifier. It reads data from the
file specified in the target file node. It is a text file where each line contains label for the
respective image (in the same order as in input image file). Besides that, it is necessary to specify the
learning period length (Learning time). Since we use 60000 images for learning and each image
corresponds to 15 emulation steps, the learning time equals to 900000.

Page 10

TUTORIALS

Now, let us consider the network itself. Strictly speaking, in this tutorial we use an ensemble of 15
networks with the similar structure instead of a single network. The decision of the whole ensemble is
determined from votes of its members — every network votes and the majority wins. This measure helps
eliminate rare accidental errors of individual networks. The ensemble size is set by the ncopies
attribute of the NETWORK node.

The networks populations and projections are described in the subsequent Section and Link nodes.
We see that description of the L population contains many new parameters. The majority of them
determine synaptic plasticity of L neurons. In order to clarify their meaning, we describe the ArNI-X
plasticity model in more detail.

The most important, in this plasticity model, the plasticity rules are not applied to synaptic weights
directly. Instead, the plasticity mechanisms modify another property of synapses called synaptic
resource. The value of synaptic resource W depends monotonously on the synaptic weight w. Different
relationships between synaptic resource and synaptic weight are implemented in ArNI-X. In the given
network, this dependence is expressed by the formula

(Wiax — Wmin)max (W, 0)

W = Wpin + .
™ Wnax — Wmin + max (W, 0)

In this model, the weight values lay inside the range [Wmin, Wmax) - while W runs from -oo to +oo, w runs
from Wiin to Wnax (see the picture below, where wpin = -1, Wpax = 2).

Dependence of the synaptic weight w on the synaptic resource W

25 -

2.0 1

15 1

10 A

0.5 +

0.0 1

-0.5 1

=1.0 1

-10 0 10 20 30 40
W

Such an approach allows solving the important problem of catastrophic forgetting. Indeed, let us
imagine that network was being trained to recognize something for a long time. As a result, the majority
of synaptic weights became either saturated (equal to the maximum possible value) or suppressed.
However, presentation of even few wrong training examples or examples containing other patterns or
Page 11

TUTORIALS

simply noise is sufficient to destroy the weight configuration learnt and nothing can prevent it. The
network will forget everything it has learnt. But in our model, when W is either negative or highly
positive, synaptic plasticity does not affect a synapse’s strength. Instead, it affects its stability — how
many times the synapse should be potentiated or depressed to move it from the saturated state. Thus, to
destroy the trained network state, it is necessary to present the number of “bad” examples close to the
number of “good” examples used to train it. This feature is most useful for unsupervised learning. Later,
we describe another mechanism fighting catastrophic forgetting, more applicable to supervised learning.

As it was said, there are several plasticity mechanisms in our model. The first one is Hebbian (or anti-
Hebbian) plasticity. Donald Hebb’s law of synaptic plasticity states that the synapses, which helped the
neuron to fire, are potentiated (in the anti-Hebbian model, they are depressed). Since effect of a
presynaptic spike on membrane potential decreases with time exponentially, we can conclude that
synapses obtaining last spike long time (sufficiently greater than membrane potential decay time
chartime) ago before neuron firing do not contribute to it. In our model, Hebbian plasticity affects the
synapses obtaining spikes during last 3 * chartime msec before firing. But if a neuron emits spikes by
dense packets (bursts or TSS - tight spike sequences) we treat every TSS as a single spike so that at most
one weight modification of each synapse is caused by one TSS even if the TSS includes many spikes.
All spikes separated by time 1S/,uqx or less form one TSS. Our version of Hebbian plasticity is very
simple. Synaptic resource of every synapse having obtained a spike 7 =3 * chartime ago or less
before TSS onset (or during the TSS) is increased by a constant not depending on exact moment of spike
arrival. This constant di depends on the basic neuron plasticity value dj and current value of a
component of neuron state s called stability. This dependence is expressed by the formula

dy = dymin (275, 1).

The stability determines the general level of the neuron plasticity. It is also used to fight catastrophic
forgetting — but in case of supervised or reinforcement learning. In this tutorial, its values remain low so
that it does not significantly influence the learning process. The laws of its dynamics will be described
later.

Another component of ArNI-X synaptic plasticity mechanism is reward or dopamine plasticity. It is also
very simple. When a neuron receives a spike via its reward synapse at most the time #p after the last
spike in TSS, the resources of all its plastic synapses having obtained a spike during this TSS or not
earlier than the time 74 before the first spike in the TSS are changed by the value equal to the weight of
this reward synapse. Again, every synaptic weight is changed at most once by one dopamine spike. The
reward synapse weight may be positive or negative (as it is in our case). ¢p is called dopamine plasticity
period.

As it was said, in the present example the neuron stability does not play a significant role. Nevertheless,
for sake of completeness, let us describe its dynamics. In this example, stability changes in two cases:

e When neuron fires, the stability increases by the value of weight inc multiplied by the value
of stability resource change ratio.

e When the neuron is punished, its stability is changed (decreased) by the value of reward synapse
weight multiplied by the value of stability resource change ratio.

Page 12

TUTORIALS
At last, we should mention two other features of the ArNI-X plasticity model.

Constant Total Synaptic Resource. In order to introduce competition between synapses inside one
neuron, we added one more component to the model of synaptic plasticity — constancy of neuron’s total
synaptic resource. Whenever some synapses are depressed or potentiated due to the above mentioned
plasticity rules all the other synapses are changed in the opposite direction by the constant value equal
for all these synapses such that the total synaptic resource of the neuron is preserved. Effect of this rule
can be controlled introducing imaginary unconnected synapses whose only role is to be a reservoir for
the excessive (or additional) resource. The competitive effect is maximum when there are no such silent
synapses and it vanishes with their number approaching infinity.

Lower Excitability of Trained Neurons. As it was said, the crucial CoLaNET property is multiple
recognizers belonging to the same target class (column) which should recognize different instances of
this class. To provide CoLaNET with this property, L neuron should be sufficiently selective i.e.
sensitive to their sub-class of the target class and insensitive to the other sub-classes. The former
requirement is fulfilled due to high positive weights of the synapses connected with the input nodes
active during presentation of objects from the sub-class recognized. In order to satisfy the latter
requirement, the trained neurons are made less sensitive in general due to elevated threshold potential.
The indicator of a trained neuron is presence of synapses with high positive weight. Therefore, a logical
choice is to make the threshold potential u7xr dependent on the sum of positive synaptic weights (of
plastic synapses only):

urgr = H + a), max(w;, 0).
Here, a is a small positive constant, H — the constant component of the threshold potential.

But let us return to description of the L population. First of all, it is important that this population has a
structure — it is not just a “flat” set of neurons but is subdivided into 10 columns as it was mentioned
above. In our network, there are 20 neurons in each column. It can be said that L neurons form a 2-D
lattice 10x20. This structure is similar to tensor organization of layers in traditional neural networks as
they are described in the popular packages TensorFlow or Keras (but the role of this organization is
completely different). To specify population structure, the node St ructure is used. The structure type
is set by the t ype attribute. Here, it has value “L” (lattice). The lattice dimensions are defined by the
child dim nodes — from the lowest to the highest dimension.

In order to exclude influence of one image to the subsequent one, the class label spike sends powerful
inhibition to all L neurons (red arrows on the CoLaNET scheme). However, to make the starting states
of all neurons equal, it is necessary to limit their membrane potential from below. It is made by the
minpotential node. Its value is 0, therefore, L neuron membrane potential cannot be negative.

The other parameters are relevant to the learning mechanism described above:

stochastic stimulation —specifies strength of the neuron stochastic stimulation — every time
step the membrane potential is incremented by a value randomly distributed in the range (0,
stochastic stimulation).

weight inc —the Hebbian plasticity value. If it is negative, then plasticity is anti-Hebbian.

Page 13

TUTORIALS

dopamine plasticity time - fp from the plasticity rule description above. Here, it equals to 10
since the class label spikes comes on the 11" step after image presentation beginning.

maxTSSTIST - ISIxax value (see above). Its value is 10 since there should be at most one
Hebbian/dopamine plasticity act per synapse per image presentation.

minweight and maxweight - Wpin and Waax , respectively.

nsilentsynapses — the number of the imaginary synapses consuming or supplying additional
synaptic resource keeping its total value constant for one neuron.

threshold excess weight dependent —the constant o in the formula for threshold
membrane potential.

It was the description of the L population. The two other populations, OUT and BIASGATE, contain
ordinary non-plastic LIF neurons — their descriptions are very short.

The sets of inter-neuron connections (projections) are described in the subsequent L.i nk nodes. Non-
plastic excitatory and inhibitory connections were considered in the previous tutorial, but in the present
tutorial, three more connection types are used (specified by the t ype attribute of L.ink). These are
plastic (the synapses which learn), reward (the dopamine synapses), and gat ing (the blocking or
activating synapses).

For plastic synapses, the original distribution of their resource may be specified in the TniResource
node. The distribution type may be specified by the attribute t ype. In our example, all synaptic
resources are initialized by the value corresponding to zero synaptic weight.

The distinctive feature of CoLaNET is its structure. To support this structure, projections should obey
certain requirements — they are called connections policies (set by the pol1icy attribute). For example,
mutual blocking connections between L neurons are organized in all-to-all manner but only within their
column (between the neurons with the same indices inside lattice except the least significant one). This
policyis all-to-all-sections. The class label input nodes are connected to L neurons by
dopamine connections in such a way that the first node projects onto the first 20 L neurons, the second
one — to the next 20 and so on. This is the policy a1igned. But the strong inhibitory connections from
class label to L obey the a11-to-all policy.

It is not difficult to see that the projection descriptions correspond to the network structure described
above.

The last thing specified in 3.nnc is Readout — the module processing activity of the output neurons.
Again, the dynamic library implementing this processing should be specified. Here, it is also
StateClassifier. Its purpose — to evaluate accuracy of classification performed by SNN in the
form of spikes from the OUT population. This population should be specified in the output node.

We launch the simulation by the command line

ArNICPU ..\Tutorials -e3 -f900000 -E900000:MNIST.nns.csv

Page 14

TUTORIALS

The option —£900000 tells that, at tact 900000, synaptic plasticity will be switched off. As we
discussed above, it corresponds to the first 60000 images used for learning. The rest 10000 images will
be used for testing the trained SNN, therefore, it should not use them for learning. The —E option is
needed to export the network structure at tact 900000 (when it had learnt to classify MNIST digits) to
the text file MNIST .nns . csv. We will use this comma-separated values (CSV) file to explore the
plastic synapse weights.

Since this network is much larger than the two previous ones, running this simulation on not very
powerful central processor may take considerable time — 3 hours and more. For this reason, it is better to
use GPU (launching ArNIGPU instead of ArNICPU), if it is available.

Upon completion, the simulator returns the termination code. If StateClassifier isused as a
readout, the termination code is determined by StateClassifier. Itis classification accuracy
(measured on the test subset) multiplied by 10000. We see that our network classifies MNIST digits with
the accuracy 96.07%. It seems to be not very high result comparatively to modern convolutional
networks. However:

1. Only one training epoch is used in this tutorial (it is because SNNs are often used in incremental
learning scenarios, where repetitive presentations of the same examples is usually impossible).

2. The network is quite simple — it includes only 3300 neurons (the MNIST winners are much
larger).

3. It does not include convolutional layers — use of convolutional SNN would make this tutorial
more difficult for comprehension.

Therefore, in fact, 96.07% accuracy is a good result.

It is interesting to look at the distribution of plastic synapse weights of L neurons recognizing different
digits. Their values are contained in MNIST.nns.csv and can be extracted from there by the Python
script MNISTweights. py. Since out network is an ensemble of 15 similar networks, we will look at
only one of them depicting the weights of its 200 L neurons. Each row of the figure corresponds to one
digit.

Page 15

NEURON MODEL

b
&

&
L

=h
i
=

e

|

ey
w
By

FEIE

&
Ug!
ey
i

&

RSN R AR
.@l .
oy

%

T
lw
t
-
. .

R =
x—w'

L]
&

naf O e

@H}

-]

+1

e ’..@ s i :3.‘.
& i ey |58 | (&

>, “_. B e iy g b .a'-'-_* R, .{Q;' L*;‘:‘
= s R

P

gt

&

CERIEE TS

= FREREIEL

5| B E‘.@} A
A
&
o

@) & [«

3 G
e 3
:m Lo

o H
b e |

| A

Red color encodes positive weights, blue — negative. We see that different L neurons recognize different
writings of the respective digits — as it was expected for the CoLaNET architecture.

NEURON MODEL

The neuron model implemented in this package is a generalized version of simple but functionally rich
model called LIFAT (Leaky Integrate-and-Fire neuron with Adaptive Threshold). Implementation of
other models (e.g. Izhikevich neuron) is also possible but requires programming and, therefore, is
outside of scope of this manual. LIFAT model itself is less functional than [zhikevich’s model, which
can describe several qualitatively different neuron operation regimes, however, additional features
introduced into it diminish this difference while retaining our model significantly simpler than
Izhikevich’s. Besides that, the LIFAT model is implemented in the most advanced modern
neuroprocessor Loihi (by Intel Corp.).

Let us describe this model formally, but, at first, consider the synapse model. The simplest current-based
delta synapse model is used for all excitatory and inhibitory synapses. Every time the synapse receives a
spike, it instantly changes the membrane potential by the value of its synaptic weight, which may be
positive or negative. The neuron state at any moment ¢ is described by its membrane potential u(?) and its
threshold potential urur(z). Dynamics of these values are defined by the equations

du u
E = —E + z Wla(t — tl]) + Inoise
Lj
duryg 2 2
T sgn(urygr — H) + Z Té(t —ty)
k

Page 16

NEURON MODEL

and the conditions that u is hard limited from below by the value uav and that if u exceeds urur then the
neuron fires (if the neuron is currently active — see below) and the current value of uzxr 1s subtracted
from u. All potentials are rescaled so that after the long absence of presynaptic spikes u — 0 and urur —
H =8.531 (see the Tutorials for the discussion of this value). The meaning of the other symbols in the
formula above is the following: 1, — the membrane leakage time constant; a — the speed of decreasing
urhr to its base value H; w; - the weight of i-th synapse; #; - the time moment when i-th synapse received
Jj-th spike; T — urnr is incremented by this value when the neuron fires at the moment &,. It should be
noted that this model should be rather called linearized LIFAT because threshold potential falls linearly,
not exponentially. This feature makes hardware implementation simpler without noticeable impact on
network behavior. The neuron may have source of its internal stochastic stimulation Zspise. It s
implemented as a random number uniformly distributed in the range [0, sqoise] Which is added to u every
simulation step.

Out implementation of LIFAT has two additional features. Firstly, the memory property is added to this
model. Neuron has the parameter called memory spike train period tu. If this parameter is defined (not
equal to infinity), then after every firing, the neuron internal timer is reset to the value ti. When this
timer reaches zero value, u is increased by a great constant. It is significantly higher than A (30 — in the
current ArNI-X version) and, therefore, the neuron is forced to fire unless its current threshold potential
is too high. It is equivalent to a very strong reflexive connection with the delay time equal to tas and the
weight equal to 30 (it is prohibited in our package to create such reflexive connections explicitly). This
feature in combination with threshold potential adaptivity allows implementing the mechanism of short-
term memory with controlled duration. Indeed, if 7, < T /a, then at the moment of the timer reset, urxr
becomes higher and higher. Eventually, it becomes so high that even this imaginary strong reflexive
connection cannot make the neuron fire. Therefore, the neuron can memorize that it received strong
stimulation in the past, which forced it to fire, but the memory about it may last only a certain time
interval.

The other additional feature is the gating ability. Neurons have a state component called the activation
counter A controlled by spikes coming at special gating synapses. When 4 is positive, the neuron is in
its ordinary state and behaves as it is described above. If 4 is zero or negative then the neuron is in
sleepy state. It means that it does not react to any incoming spikes (except spikes coming to gating
synapses) and is not able to fire. While 4 is non-zero, it is changed by 1 towards 0. If 4 was 1 and
becomes 0, it remains equal to 0 for indefinite time. If 4 was -1 and becomes 0 it is reset to a very great
positive number (= +o0). Neuron may have synapses, which can change 4 (gating synapses). Their
weight may be either negative or positive. If neuron receives a spike via a gating synapse with the
negative weight and the current value of 4 is greater than that weight, 4 is set to the value of that weight.
Therefore, in this case, the neuron becomes inactive and remains in this state the time equal to the
absolute value of weight of that gating synapse (in msec). If the receiving gating synapse has positive
weight and the current 4 is less than that weight, 4 is also set to the value of that weight. All this means
that gating synapses can either activate neuron for the specified period or, conversely, block its activity,
thus performing gating functions. Gating synapses can be considered as an ultimate version of strong
excitatory or inhibitory synapses but with exactly controlled temporal characteristics and more
deterministic effect on neuron state. Besides the gating synapses, a neuron can be inactivated by its own
firing if its refractory period 1z 1s positive. In this case, each neuron firing makes it’s 4 equal to -tz.

Page 17

SYNAPTIC PLASTICITY RULES

SYNAPTIC PLASTICITY RULES

The most valuable ability of neural networks is their ability to learn. Learning in the traditional non-
spiking neural networks (artificial neural networks — ANN) is implemented due to the appropriate
modification of synaptic weights of their neurons. In this sense, the SNNs do not differ from the ANNs —
their synaptic weights are also adjusted during the learning process. However, the approaches to
synaptic weight modification in ANN and SNN are completely different. Output value of ANNs is in
fact a smooth function of its synaptic weights. It makes it possible to apply a gradient descent technique
(the so-called backpropagation algorithm) to optimization of the synaptic weights. In contrast with them,
SNNs are discrete by their nature. They produce spikes instead of real numbers. Therefore, the gradient
descent algorithm cannot be used for SNN - the respective partial derivatives cannot be calculated. For
this reason, the learning of SNN is based on completely different principles. The basic one is the locality
principle reflecting discrete and asynchronous functioning of spiking neurons. It stipulates that
modification of a synaptic weight must depend on properties and activity of the pre- and post-synaptic
neurons only.

In ArNI-X, excitatory and inhibitory synapses are plastic only if they are explicitly declared as plastic.
Otherwise (by default), they are not plastic (fixed) — the plasticity rules do not affect them. Difference
between plastic and fixed synapses is important as they play the different roles. Plastic synapses are
connected to sources of signal conveying information about the external world used for learning. Fixed
synapses are usually strong and used for some special needs when it is necessary to force a neuron to
fire or prevent firing. If a neuron fires when it receives a spike via its fixed synapse, we will call it
forced firing.

The ArNI-X local synaptic plasticity rules (there are two kinds of them) are very simple and designed
with a view to their efficient implementation in neuromorphic hardware. One of them works with the
ordinary plastic excitatory and inhibitory synapses while the other requires presence of the special
plasticity-modulating (reward or dopamine) synapses in the neuron. It is necessary to remind that, as it
was discussed in the Tutorial, the plasticity rules are applied to value of synaptic resource instead of
synaptic weight. Usually, the synaptic weight values are updated (calculated from the current synaptic
resource value) when the changes of synaptic resources become too great. In addition, it should be noted
that usually these plasticity rules act in combination. Let us consider them.

The synaptic plasticity principle formulated by Donald Hebb claims that all synapses that helped the
neuron to fire are strengthened. This principle got its empirical confirmation in the form of the STDP
(Spike Timing Dependent Plasticity) plasticity model discovered in the end of last century in living
neurons. In accordance with this rule, the synapses obtaining spikes short time before firing are
potentiated, but if a synapse obtains a spike short time after firing, it is depressed. The rule is simple and
useful; however, it becomes self-contradictory in the case of frequent firing as it is shown on the picture
below.

Page 18

SYNAPTIC PLASTICITY RULES
postsynapticspikes

presynaptic spikes

It iz ok... the synapse is potentlated
‘ postsynapticspikes

| presynaptic SPIKES

Itis alsook... the synapse is depressed

‘ | l postsynaptic spikes

‘ | | presynaptic spikes
*

Mow it is not clear what to do with this synapse...

It is why we bind the plasticity rule to postsynaptic spike trains instead of single postsynaptic spikes. We
will refer to these spike trains as tight spike sequences (TSS) — saying about postsynaptic spikes emitted
by the given neuron. Specifically, taking the constant IS7,qx (ISI = Inter-Spike Interval) as a measure of
“tightness” of TSS, we define TSS as a sequence of spikes adhering to the following criteria:

There were no spikes during time IS/, before the first spike in TSS;

Inter-spike intervals for all neighboring spikes in TSS are not greater than /S7ax;

There are no spikes during time 1S/, after the last spike in TSS.

Forced firing terminates the current TSS. A stand-alone forced firing is also considered as a
particular case of TSS however, as we will see, forced firing is treated by the plasticity rules in a
special way.

b e

Besides that, there may be anti-Hebbian variant of this plasticity mechanism — depressing the involved
synapses instead of potentiating them.

The STDP and the similar rules are often used for unsupervised learning. The goal is to find a group of
synapses, which often obtain spikes inside the same sufficiently narrow time window. If the spikes come
almost simultaneously, the resulting membrane potential increase is sufficient for firing and as the result
of Hebbian plasticity the participating synapses get more strength and their common participation in
next firing becomes more probable. The standard STDP rule seems to fit this purpose very well, but after
closer investigation, one its drawback becomes evident. In the beginning of the learning process, this
rule works well. It really potentiates the synapses from that group of correlating synapses obtaining
spikes inside the same time interval. But as their weight grow, the neuron begins to fire earlier inside this
interval. Therefore, there will be synapses from the same group that obtain spikes after firing. In
accordance with STDP, they will be suppressed (and strongly suppressed) although they should be
strengthened. This negative effect leads to unstable learning. To overcome it we introduce the symmetric
version of STDP. In our model, any synapse receiving a spike at the moment close to firing (no matter —

Page 19

SYNAPTIC PLASTICITY RULES

before or after) is potentiated. Besides that, it eliminates the above mentioned inconsistency of the
standard STDP in case of frequent firing.

With the described amendments (association with a TSS instead of a stand-alone postsynaptic spike and
symmetry with respect to postsynaptic spikes), our synaptic plasticity model follows Hebb’s principle.
Namely, it includes the following rules:

1. The resource of any synapse can change at most once during a single TSS.

2. The resources of only those synapses are changed which receive at least one spike during TSS or
short time 7y before the very first spike in the TSS. Goal of this rule is to reward (or punish) all
the synapses which contributed to postsynaptic spikes in the given TSS. Therefore, the synapses
having obtained spikes shortly before the TSS onset should be also modified. Effect of one spike
to membrane potential decays with the time constant t,, hence 7y = Bt,., where B is a small number
(3 — by default).

3. All synaptic resources are changed by the same value dy independently of exact timing of
presynaptic spikes. dy may be negative as well as positive.

In case of Hebbian (or anti-Hebbian) plasticity, the direction of synaptic resource modification is always
the same for the given neuron. However, in many learning tasks, more flexible weight adjustment is
needed — when a neuron behaves correctly, the active synapses should be potentiated, otherwise they
should be depressed.

This flexible synaptic weight regulation is performed with help of special synapses called reward or
dopamine synapses. These synapses may have positive or negative weight and spikes coming to them
can increase or decrease synaptic resources of plastic synapses by the value proportional to their weight.
So that the name “reward synapses” is not quite correct — these synapses may “reward” as well as
“punish” plastic synapses. However, in contrast with Hebbian plasticity, implementation of dopamine
plasticity is asymmetric — reward and punishment use different mechanisms called 2-factor and 3-factor
plasticity rules. Choice of 2- or 3-factor rule is determined by the sign of the total weight of all
dopamine synapses obtaining spikes at the given moment.

2-factor Plasticity (Punishment)

First, we consider the simpler one called 2-factor dopamine plasticity rule because it is based on two
types of events — obtaining a spike by a plastic synapse and obtaining a spike by a reward synapse.

2-factor dopamine plasticity rule is very simple. Whenever a reward synapse obtains a spike, the
synaptic resources of all plastic synapses having obtained at least one spike during last 7p msec are
changed by a value proportional to the weight of this reward synapse (or to the sum R of weights of all
dopamine synapses obtaining a spike). About the proportionality coefficient — see below. This rule has
one exception — it is not applied if the most recent neuron firing was forced.

3-Factor Plasticity (Reward)

3-factor dopamine plasticity rule includes one more event that should happen in order to trigger weight
changes — the neuron firing. More precisely, similar to Hebbian plasticity, 3-factor dopamine plasticity

Page 20

SYNAPTIC PLASTICITY RULES

rule is associated with a TSS instead of a single postsynaptic spike (which is a particular case of a TSS).
3-factor dopamine plasticity is triggered by a spike incoming to a reward synapse but only if the neuron
fired not more than 7p msec ago. 3-factor dopamine plasticity rule changes the resources of all synapses
contributing to the last TSS by the value proportional to the weight of the reward synapse. The meaning
of the word “contributing” is the same as for Hebbian plasticity (see above).

This asymmetry is a consequence of the basically different semantics of punishment and reward. If some
neuron group should react by their activity to certain conditions, it means that each neuron in the group
should recognized its own subset of these conditions (otherwise, several neurons would be functionally
equivalent and, therefore, could be replaced by a single neuron). That is, if neuron firing is prohibited
under certain conditions expressed by combination of synapses obtaining a spike that is indicated by a
punishment spike, then the respective synapses of all neurons in the groups should be depressed (2-
factor rule). But if some neuron recognized the target conditions correctly by firing then only this neuron
should be rewarded (3-factor rule).

It is necessary to say that Hebbian plasticity and dopamine plasticity can be combined inside one
neuron.

In order to strengthen competition between synapses, we introduced the postulate that the total synaptic
resource of one neuron should not change in time. It means that if the resource of some synapse is
increased then the resources of all other synapses should be appropriately decreased by an equal value.
However, effect of this mechanism can be regulated in the following way. A neuron may have some
number of unconnected plastic synapses. They have no presynaptic neurons and serve only as a reservoir
for excessive synaptic resource (or as a source of additional synaptic resource deployed on the working
plastic synapses). The renormalization procedure is invoked when amount of the synaptic resource to re-
distribute exceeds a certain threshold.

In the Tutorial devoted to unsupervised learning, we mentioned the problem of catastrophic forgetting
and the concept of synaptic resource as a method to fight it. This method is efficient in the case of
unsupervised learning because the asymptotic state of synapses of trained neurons in this case is
saturated — close either to minimum (often — zero) or to maximum. However, supervised learning often
requires exact setting of synaptic weights far from their minimum and maximum values. Therefore, an
alternative mechanism for preventing catastrophic forgetting is needed. In order to implement such a
mechanism, an additional component of neuron state is introduced. It is called the stability s. This value
determines synaptic resource changes caused by the synaptic plasticity mechanisms considered above.
The neuron plasticity falls exponentially with growth of s. For untrained neurons, s = 0.

For example, the resource change dy in the Hebbian plasticity rule depends on s this way:
dy = dymin (275,1).

Here, dy, is the basic level of Hebbian plasticity.

Page 21

SYNAPTIC PLASTICITY RULES

For dopamine plasticity, the resource change is Dmin (27%, 1), where D is the weight of the reward
synapse obtaining the spike.

The rules controlling changes of s are following:

1.
2.
3.

Non-positive s can only increase.
The first firing in TSS (and the forced firing) changes s by rd,;, where r is a constant.
When a neuron receives reward spikes, its stability changes accordingly to the table:

The most recent The R sign The stability change
firing was forced

No Negative rR

Yes Negative 0

No Positive 2rR

Yes Positive -rR

These rules may seem complicated but they have a natural explanation. For example, since in our
system, synaptic weights change discretely, the number of stability change acts should be proportional to
the number of weight changes — it is why all stability change formulae have the same factor . The form
of these formulae follows from the learning purpose. For example, if some neuron should learn to fire at
the correct moment, then the four situations are possible:

The neuron did not fire and it was right. Nothing happens.

The neuron did not fire but was expected to fire. In this case, we force the neuron to fire using
the strong fixed excitatory synapse. All plastic synapses, which would help it to fire (the
synapses having obtained spikes recently), are potentiated due to 3-factor plasticity. But this
neuron behavior shows that it is not trained yet. Therefore, to facilitate its further training, its
stability should be decreased.

The neuron fired but it was wrong. When the neuron fired it was not clear was it right or
wrong. It is safer to think that it was wrong — because if this neuron will not receive reward in
the near future, then it was a wrong firing. Therefore, when the neuron fires, the contributing
synapses should be depressed and its stability lowered.

The neuron fired and it was right. In this case, it receives reward short time after it fired. Its
weights should not change (because it has learnt already — it performs well) and its stability
should be elevated. The later requirement is satisfied because in this case the stability increment
is doubled — 27R. (in case of balanced anti-Hebbian and positive dopamine plasticity - R = —dj)

It can be shown that the rules described above are consistent with the purposes of unsupervised and
supervised learning.

Page 22

NETWORK STRUCTURE DESCRIPTION

This feature was considered in Tutorial 3. The neuron’s threshold potential can be made dependent on
the sum of positive synaptic weights (of plastic synapses only):

Uurgr = H + a), max(w;, 0),

where, a is a small positive constant. In this case, its own dynamics are eliminated T = a = 0.

In Tutorial 3, we discussed the relationship between the synaptic weight w and the synaptic resource W.
However, the formula given there, expressing a smooth dependence of w on W, is not the only variant of
this relationship implemented in ArNI-X. The other variants are needed mostly in the case when the
SNN are destined to be placed on a specialized neurochips where individual microprocessors
(neurocores) have very limited number computational abilities. In this case, either this dependence
should be much simpler or set of possible weight values should be very limited (weight quantization). To
support this, three other dependences of w on I are implemented in ArNI-X in addition to the above-
mentioned one (called smooth):

e clipped—w = max(Wy,, min(Wy,g,, W));
Whin if W <0
e quantized-w =< Quog,w) if log2(W) < [Q| + 1, where Q is the set of possible weight
Winax 0/W
values — these values are selected from the condition of minimality of the maximum difference
between the weights calculated in this model and in the model smooth;
(Whin if W <0
S if W< 24
e superquantized-w =< 0if29 <W <291 | where q is a small positive integer
T jf 20 S W < 20%2
\ Winax 0/W
determining quantization step.

In the next chapter, we will show how the parameters of neuron model and synaptic plasticity model can
be specified on the level of neuron populations and projections using NNC files.

NETWORK STRUCTURE DESCRIPTION

The simulated SNN structure is defined in a special Neural Network Configuration (NNC) file whose
name should have the format <EmulationNo>. nnc, where EmulationNo — is an integer number. This
file is a text file written in XML language. This chapter describes its syntax.

The first line of an NNC file should be

Page 23

NETWORK STRUCTURE DESCRIPTION

<?xml version="1.0" encoding="utf-8"?>
It says that it is an XML file with UTF-8 character encoding.

The file should contain one highest level XML node with the tag SNN. This node may have one attribute
mode 1 determining relationship between synaptic resource and synaptic weight (see the previous
section).

Inside the SNN node, there should be one or more RECEPTORS nodes, NETWORK nodes, and, optionally
Readout node, which describe the input nodes (there may be several input node sections sending
signals with different semantics), the components of the network, and the module obtaining output
spikes, respectively.

RECEPTORS

A RECEPTORS node should have the attribute name defining name of the input node section, and may
have the attribute n specifying number of input nodes in this section. If the latter is not set, it should be
set by the module implementing this input node section (see below).

A RECEPTORS node should include only one node with the tag Tmplementation. It should have
only one attribute 1 1b that specifies the dynamic library responsible for generation of input spikes. In
this manual we consider only two such libraries — fromF1i1e, which can read input from a file and add
Poissonian noise, and StateClassifier. The latter is used in classification tasks - it provides spikes
labelling current target class(es) and measures the network classification accuracy.

An Implementation node should include only one node with the tag 2 rgs with the attribute t ype.

For fromF1ile, this attribute can take the following values:

e none — No external input data (only Poissonian noise).

e text — The input spikes are read from a text file. One line corresponds to one simulation step.
The length of every line should be equal to the input node count. If the given input node should
emit spike then that corresponding position in the file should be occupied by ‘@’ character.
Otherwise, it should be .’ character.

e Dbinary—The input spikes are read from a binary file. The binary file contains input signal in
the form of bit mask — one bit for one input node — one after one. Bit record for one simulation
step (one input signal portion) should have 64 bit (8 byte) alignment. Bit records for successive
simulation steps go tightly one after one.

e image — A special kind of binary input signal file — a set of monochrome images. See the
Special tag below.

The args sub-node in the case of the fromFile module contains various parameters of the input node
section (all they are optional) in form of sub-nodes. They are:

e history length—number of iterations 7 (= msec) during which the input node section
generates the input signal. This parameter is obligatory if the input node section emits pure noise
— without reading spikes from a file. If 7 is less than the number of iterations for which input
Page 24

NETWORK STRUCTURE DESCRIPTION

spikes are contained in the file then only 7 first input signal portions are read from the file. If 7'is
greater than the number of iterations for which input spikes are contained in the file and signal
generation regime is normal (the mode node is not present), then 7"is made equal to number of
input signal portions contained in the file. When input signal cannot be produced anymore,
the emulation terminates.

e meanings —name of the text file containing labels of the input nodes. This file should contain
number of lines equal to number of input nodes — each line should contain identifier of the
respective input node which will be displayed in the network activity log file (if the command
line argument —v 2 is used). By default, the input node label is the input node section named
followed by the ordinal number of the node inside the section.

e mode — the signal generation regime. This parameter can take the values repetitive or
endless. If this XML node is present and its value is repetitive, then the signal recorded
in the file (if its duration is less than the value of history length)isread from the
beginning again after it is completely read — until the total length of the input signal reproduced
isequalto history length. The endless mode means that after the input signal from the file
is completely read, the input signal generation can continue (if history length is greater
than the recorded signal length) but it does not contain spikes (silent input signal).

e noise — Poisson noise intensity f(kHz). If this parameter is present, the Poisson noise is added
to the input signal. It means that for each input node and each iteration, the random number
uniformly distributed in [0, 1] is generated. If it is less than f, a spike is emitted.

e period-— spike emission period P (msec). If this parameter is present, the first input node emits
a spike every Pth iteration — in addition to spikes from the file and noisy spikes.

e shuffle —ifpresent, this node instructs the system to shuftle the input file contents (text lines,
binary data portions or images) randomly. Optional random number generator seed value may be
specified in it.

e source —input signal file name. If it is not specified, stdin is used.

e Special —if present, this node specifies a special format of the input signal file (determined by
the t ype attribute). At present, this node can be included only one for t ype equal to image. In
this case, the input signal file contains monochrome images stored tightly image by image, row
by row. Every image is presented during a certain time period. Every pixel corresponds to one
input node. Number of spikes emitted by this input node during this period is proportional to the
pixel brightness b. The input nodes produce spikes by the following algorithm. Every input node
has a state variable associated with it. Its initial value is 0. Every emulation step, it is
incremented by the value gb, where g is constant. If its value reaches 1, then input node fires the
the state variable is decremented by 1. The Special node should include the following sub-
nodes:

o height - the image height (pixels).

o 1image presentation time - time of presentation of one image (msec).

o maxfrequency (optional)— the maximum input node firing frequency (kHz). Since
brightest pixels have value 255, the constant g equals to this value divided by 255. The
default value is 1.

Page 25

NETWORK STRUCTURE DESCRIPTION

o ntact per image —time corresponding to one image presentation (msec). If this
value is greater than image presentation time, then during the rest simulation
time, the input nodes do not emit spikes.

o offset (optional) — position of the first image in the file (bytes). Default = 0.

o width - the image width (pixels).

tacts to skip — the number of input signal portions (simulation steps) recorded in the file
which should be skipped (from the file beginning).

If the input node section is implemented by the StateClassifier module, the args sub-node can

contain the following parameters:

criterion — the classification accuracy evaluation. It determines how the simulation return
code is evaluated (usually it equals to number of simulation steps executed, but in the case of
StateClassifier readout, its meaning is different). The possible values are:
o absolute error —returned code is the fraction of correctly classified test examples
multiplied by 10000.
o weighted error —returned code is the mean fraction of correctly classified test
examples in each target class multiplied by 10000.
o averaged F —returned code is the sum of the F measures of classification accuracy in
all classes weighted by example count in each class and multiplied by 10000.
learning time — this simulation period from the simulation beginning is not used for the
accuracy evaluation.
max silence —the maximum allowed time period without spikes from the output
populations. If the silence is longer, the simulation is terminated.
no class — there may be several such nodes. They specify the target classes which will be
ignored — the examples labelled by these strings will be considered as not belonging to any class.
prediction file —the detail information on classification of test examples will be stored in
this file.
sequential test —ifthis node is present, it means that objects from one class are often
presented in series. Therefore, in case of unclear prediction, it is reasonable to assign to the
current example the same label as for the previous example.
shuffle —it has the same meaning as for fromFile and should correspond it.
spike period — the first class label spike will be emitted after this time since the example
presentation offset and after that will be emitted with this period. The default value is 10 that
corresponds to the object presentation time in the CoLaNET protocol (see Tutorial 3).
state duration — the total time period corresponding to one example presentation. The
default value is 15 that corresponds to the CoLaNET protocol (see Tutorial 3).
states to skip —the number of lines in the beginning of the target class file which should
be skipped (from the file beginning).
target file — the file containing example class labels — one line per example.

Page 26

NETWORK STRUCTURE DESCRIPTION

NETWORK

In this manual, it is assumed that the NETWORK node includes only one node with the tag Sections.
In fact, there may be several NETWORK nodes and they can include other kinds of sub-nodes. The latter
case corresponds to SNN sections implemented by dynamic libraries using the respective API, which is
not covered by this manual, and, therefore, not considered here.

The Sections node includes at least one Sect ion node and at least one Link node. The Section
nodes describe neuronal populations, the 1.1 nk nodes — projections (set of connections between
populations).

Also, there is a special case of NETWORK node without sub-nodes and with the attribute saved. Value
of this attribute is a name of a file containing a previously saved SNN (with the extension .nns — see
below). In this case, the network will be restored from the file.

The NETWORK node may have the attribute ncopies. If it exists, several instances of the network
described by the NETWORK node will be created. Their count is the integer value of the attribute
ncopies. The postfix #<instance number> will be added to population names in these instances in
order to make the population names unique.

Section — Neuronal Population Property Definition

Any population should have a unique name specified by the attribute name.
The population’s neuron properties are described in the sub-node props.

The following parameters can be specified as the sub-nodes of props (see the notation used in the
neuron model description):

e Dbursting period-memory spike train period i (msec). By default, neurons have no
capability of constant firing (and therefore, their ti = 0). However, if the memory property is
present then the neuron of the population described have this ability, and the default value of ta
is 9 msec.

e chartime —the membrane leakage time constant 1, (msec). The value of this node may be
INFINITY. In this case, there is no membrane potential leakage. The default value is 1. Since
every emulation step, the membrane potential is multiplied by 1 — 1/ 1,, T, = 1 means that by
default the membrane potential is zeroed before every emulation step.

e dopamine plasticity time — Tp (msec).

e hebbian plasticity chartime ratio - (default=3).

o maxTSSIST — IS (msec) — the maximum inter-spike interval in TSS. By default, this value is
0 —no TSS, only single postsynaptic spikes are taken into account.

e maxweilght —the maximum value of the plastic synapse weight Wiax.

e memory — the approximate duration of neuron memory implemented as a sequence of periodical
firings (msec) —see the bursting period parameter. nemory can have the following
values:

o anumber. This is memory duration in msec.

Page 27

NETWORK STRUCTURE DESCRIPTION

o INFINITY. In this case, the only possible way to stop the periodical firing is inhibition
from some other neuron.
o UNI (<min>, <max>) . In this case, neuron’s memory duration value is a uniformly
distributed random number from the range (min, max).
o LU (<min>, <max>) . In this case, natural logarithm of neuron’s memory duration value
is a uniformly distributed random number from the range (In(min), In(max)).
minpotential—the minimum value of the membrane potential uy;y. The default value is very
high negative number (no lower limit for the membrane potential).
minweight —the minimum value of the plastic synapse weight wy.i,. The default value is 0.
n — the number of neurons in the population. It is the only mandatory parameter.
nsilentsynapses —number of (imaginary) additional plastic synapses not connected to any
spike source. They are used in the synaptic resource renormalization procedure as a reservoir for
excessive synaptic resource (or as a source of synaptic resource deployed on the working plastic
synapses). The default value is 0 that corresponds to exactly preserved neuron’s total synaptic
resource. The value -1 means that the total synaptic resource constancy is not maintained.
nwquants — the number of intermediate synaptic weight values (not including wii, and Wiax)
in the quantized synaptic weight quantization model.
refractory period —1gr.
stochastic stimulation - Snoise.
stability resource change ratio —the coefficient of proportionality » between the
neuron stability change and synaptic resource change for the case of zero stability.
Structure — the population geometrical structure. If it is defined, it can determine the pre/post
connection probabilities and the synaptic delays. This node should have one obligatory attribute
type and optional attributes. The attribute t ype determines the type of structural organization
of the population. At present, only one type is implemented — tensor (lattice) structure,
corresponding to the value of t ype equal to L. For this structure type, the St ructure node
includes one or several nodes dim whose values should be integer numbers. These numbers
define dimensions of the lattice whose nodes correspond to neurons from this population.
Therefore, the product of all these numbers should be equal to the population size.. This structure
is taken into account when inter-neuron connections are created (see below).
threshold decay period - the time fo necessary for the threshold potential to reach its
basic value after a single stand-alone firing (msec). a = T/t,.
threshold excess weight dependent —o.
threshold inc — the threshold potential increment T
weight inc —the basic level of Hebbian plasticity dy.

Link — Projection Property Definition

Projection is a set of connections between neurons. One projection can include connections between two
neuron populations (or between a population and itself). The connections belonging to one projection
have similar properties, parameters either equal or taken from the same random distribution. The XML
node Link describing a projection has two obligatory attributes and two optional ones. The two

Page 28

NETWORK STRUCTURE DESCRIPTION

obligatory attributes, f rom and to, specify the names of the populations connected. £ rom may be the
name of a population or an input node section. The two optional attributes are:

type — connection type (see the description of synapse types above). It may be plastic,

reward or gating. If there is no type attribute, the synapses belonging to the projection are

fixed.

policy — connection policy. It may be one of the following (see the picture below):

©)

aligned. If the population are of the same size, then it is one-to-one projection. The
neurons with the same index inside their populations are connected. If the presynaptic
population is smaller then every neuron from it is connected to n neurons where 7 is
integer part of the ratio of the postsynaptic population size and the presynaptic population
size. Again, all neurons are selected in order of their indices inside their populations. If
the postsynaptic population size is not a multiple of the presynaptic population size, some
postsynaptic population neurons will stay unconnected. If the postsynaptic population is
smaller, then the situation is mirror-symmetric.

all-to-all. All-to-all connections (but reflexive connections are prohibited!).
all-to-all-sections. This connection policy is only allowed if both connected
populations have L structure (see the tag St ructure inside Section) and the
dimensions of these structures except the lowest one are the same. In this case, all-to-all
connections among the neurons with the same sets of the L structure indices except the
lowest one are created. For example, winner-takes-all blocking lateral connections can be
made using this policy.

exclusive. If both connected populations have L structure with the same lowest
dimension, then these are all-to-all connections excluding connections between the
neurons in with the same lowest L structure index. Otherwise, these are all-to-all
connections excluding connections between the neurons with the same index inside their
populations.

exclusive-high. This connection policy is only allowed if both connected
populations have L structure with the same highest dimension. These are connections
between the neurons with the different highest L. indices.

exclusive-sections. This connection policy is only allowed if both connected
populations have the same L structure. These are connections between the neurons with
the different highest L indices and the same values of all the rest indices.

If the po1icy attribute is not defined, the connections between the populations are random.

These connection policies are illustrated on the picture. Four lower schemes illustrate connections
between populations with L structure. Different sections correspond to different higher L dimension

indices while different positions inside sections — to lower dimension indices.

Page 29

VYVVYVY

aligned

all-to-all

VYBYY

all-to-all-sections

exclusive (outcoming connections from the neurons
with only one value of highest L index are shown)

e e e

exclusive-sections

exclusive-high (outcoming connections from the neurons

with only one value of highest L index are shown)

NETWORK STRUCTURE DESCRIPTION

Inside the I.ink node, there should be nodes
describing the projection properties:

e Delay — synaptic delay distribution (in
msec). This node should have the attribute
type, which can take one of two values —
uni or 1n. The former corresponds to
uniform distribution, the latter — to log-normal
distribution. In the first case the node Delay
should include the nodes min and max,
defining the range of delays. If their values are
equal then all delays are set to this number. In
the case of log-normal distribution, there
should be the sub-nodes mean (with the
numeric value M) and stddev (with the
numeric value d). The random delays are
generated using the formula Mexp(N(d)),
where N(d) is a normally distributed random
value with the center in 0 and the standard
deviation d. The random delay is hard limited
from above by the value 30 msec — the longest
possible delay in ArNI-X.

e IniResource - initial synaptic resource
distribution. This node should have the

attribute t ype, which can take one of two values — uni or dis. uni corresponds to uniform

distribution. In this case, the node ITniResource should include the nodes min and max,
defining the range of initial resource values. If their values are equal then all initial resources are
set to this number. di s means discrete distribution. If t ype="dis”, the node ITniResource

should contain one node default and, optionally, several nodes value. Every value node

should have the attributes v and share. The attribute share should be a number from the

range (0, 1). It is the probability that the initial value of a synaptic resource equals to the value of
the respective attribute v. The sum of all shares should not exceed 1. If the sum is less than 1,

then a synaptic resource takes the value de fault with the probability equal to the difference

between 1 and this sum. By default, synaptic resources are initialized by 0.

maxnpre — the maximum number of synapses belonging to this projection per neuron. This

property can be set only for the default connection policy. The default value is very great (no

limits on synapse counts).

probability—the probability that two given neurons from the populations from and to will

be connected. This property must be set only in the case of the default connection policy.
weight — the synaptic weight. This property must be set for all projection types except
plastic (for plastic connections, the initial resource is specified instead of weight).

Page 30

SIMULATOR COMMAND LINE ARGUMENTS
SIMULATOR COMMAND LINE ARGUMENTS

The emulator command line has the syntax ArNT (C | G) PU <ExperimentSeriesDirectory> <Options>*.
ArNICPU preforms the simulation on CPU, ArNIGPU — on GPU. ExperimentSeriesDirectory should
contain all NNC files belonging to one emulation experiment series. The Options are following:

-C(<CardNo>[,<CardNo>]|[N<NCores>). The first form specifies GPU ids used for emulation (e.g. -
CO0, 2). The second — number of CPU cores used (-CN10). By default, all available cards/cores are
used.

-E<IterationStep>:<FileName> - used to export network configuration at IterationStep to FileName. If
this option is used, the current directory should contain the dynamic library NetworkExporter,
performing the network state export. The default version of this library shipped with this distribution
package saves the network state in CSV format.

-e<ExperimentNo>. The configuration file <ExperimentNo>.nnc is used. It is the only mandatory
option.

-F<MonitoringPeriod>. Sets the periodicity of network status saving (msec). The default value is
200000.

-f<NetworkFixinglteration>. If present this option sets the emulation iteration number after which the
network becomes non-plastic — all its synaptic weights values are fixed.

-P (b | t| 1) [<iterbeg-iterend>]. This option controls network activity recording. The letters b, t or 1
determine the recording format. The text format (t) was described in Tutorials. In case of binary format
(b) the network neuron firings are stored as bit masks in the file spikes.<ExperimentNo>.bin. The
first 4 bytes of this file is the neuron count in the network. After that the bit masks go sequentially with
8-byte alignment. 1 corresponds to the list format (spikes.< ExperimentNo>. 1st). In this case, the
resulting file contains one line per neuron. The i-th line contains iteration numbers of all i-th neuron
firings consecutively in the form of comma separated values. By default, the recording is carried out
during the whole emulation, but its period can be specified explicitly.

-R [S][<Seed>]. Using this option, the emulation can be randomized (due to random resetting of the
internal random number generator). Using —RS, the input spike sources can be also randomized. If Seed
is specified, this randomization is deterministic.

-r. This option saves input node activity recording in the same format as for network activity. The base
name of the resulting file is receptor spikes.

—-T<TerminationlterationNo>. This option allows to stop the emulation at the iteration number specified.

-v (01]2).This option sets the emulation output level. In the case of the zero value (default), no
output is produced (except, maybe, the activity record file — see the option P). Value 1 adds the
monitoring file (monitoring.< ExperimentNo>. csv). Value 2 adds the verbose log file
<ExperimentNo>. 1 og containing records of all events (firings, synaptic plasticity acts etc.). It may be
really huge.

Page 31

